13 Commits

Author SHA1 Message Date
b3bcd286fd add mouse mode mouse compatability 2026-01-18 23:10:46 +01:00
72a7744433 revise modes: add steering deadzone, pedal support for WASD mode 2026-01-18 22:57:48 +01:00
68ef4b1d2b separate g29 modes into: media, wasd, mouse
separate 3 modes: media, WASD, mouse
2026-01-18 21:43:59 +01:00
2764e18e37 apply non-linear steering curve 2026-01-18 19:25:22 +01:00
218e852f06 move G29 input constants to header file 2026-01-18 18:36:21 +01:00
f2c94e77de cleanup phase accumulator approach 2026-01-18 17:44:14 +01:00
7d1f661cf1 add modulo aproach to timer 2026-01-17 16:25:17 +01:00
87217f1150 Add wheel WASD 2026-01-17 15:18:58 +01:00
aedde65362 Refactor media 2026-01-17 12:52:30 +01:00
c77c23c6ed Add wasd-emulator 2026-01-17 11:49:02 +01:00
0e6a553740 First implementation of Media Control 2026-01-17 11:44:42 +01:00
Thomas Hilscher
3cc6115694 Fixed mouse driver and moved to seperate folder 2026-01-17 11:44:05 +01:00
Thomas Hilscher
8ab4ca7533 Added first tries 2026-01-17 11:42:49 +01:00
10 changed files with 1573 additions and 476 deletions

84
.gitignore vendored
View File

@@ -1,42 +1,42 @@
# IDE and Editor # IDE and Editor
.vscode/ .vscode/
.idea/ .idea/
*.swp *.swp
*.swo *.swo
*~ *~
.DS_Store .DS_Store
# Dependencies # Dependencies
node_modules/ node_modules/
__pycache__/ __pycache__/
*.pyc *.pyc
*.pyo *.pyo
*.egg-info/ *.egg-info/
.venv/ .venv/
venv/ venv/
# Build outputs # Build outputs
dist/ dist/
build/ build/
*.o *.o
*.a *.a
*.so *.so
*.ko *.ko
*.mod *.mod
*.mod.c *.mod.c
*.cmd *.cmd
.*.cmd .*.cmd
Module.symvers Module.symvers
modules.order modules.order
# Logs # Logs
*.log *.log
npm-debug.log* npm-debug.log*
# Environment variables # Environment variables
.env .env
.env.local .env.local
# OS files # OS files
Thumbs.db Thumbs.db
.DS_Store .DS_Store

View File

@@ -1,5 +1,62 @@
# Device Drivers
----------------------------------
Device Driver This repository contains Linux **kernel modules** (``.ko``) that implement low-level USB input drivers and expose device events through the Linux **input subsystem** (evdev).
=============
[Logitech G29 USB Protocol](logitech-G29.md) A helper tool (``usb_driver_manager.py``) is included to make it easier to:
- list USB devices and their **interfaces**
- load/unload (reload) a chosen ``.ko`` module
- unbind/bind a selected interface to a chosen driver during development
## Drivers
----------
### Mouse driver (``mouse/``)
USB HID boot-protocol mouse driver.
**Build:**
```bash
cd mouse
make
```
### Logitech G29 media driver (``g29_media_usb/``)
Logitech G29 driver that maps selected wheel inputs to media key events.
**Current mapping (Mode 0):**
- Red rotary clockwise / counter-clockwise -> Volume Up / Volume Down
- Return ("Enter") -> Play/Pause
- Plus / Minus -> Next track / Previous track
**Build:**
```bash
cd g29_media_usb
make
```
After building, the module (``*.ko``) is typically placed under ``build/`` by the provided Makefiles.
## USB Driver Manager
---------------------
**Usage examples:**
```bash
# Search for modules in these driver directories (the tool searches recursively)
sudo python3 usb_driver_manager.py ./mouse ./g29_media_usb
# Or point directly at build/ directories
sudo python3 usb_driver_manager.py ./mouse/build ./g29_media_usb/build
```
**Workflow:**
1. Select the USB device.
2. (Optional but recommended for non-mouse devices) select the USB **interface** to bind.
3. Select the kernel module.
4. Confirm; the tool unbinds the current driver, reloads the module if needed, and binds the chosen interface.
## Testing
----------
After binding the driver, use ``evtest`` to confirm key events:
```bash
sudo evtest
```

14
g29-wheel/Makefile Normal file
View File

@@ -0,0 +1,14 @@
.PHONY: all clean install uninstall
obj-m += g29_usb.o
PWD := $(CURDIR)
all:
$(MAKE) -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules
mkdir -p build
-mv -f -- *.ko *.mod.c *.o .*.o *.mod modules.order .*.cmd *.symvers build/
clean:
$(MAKE) -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean
rm -rf build

616
g29-wheel/g29_usb.c Normal file
View File

@@ -0,0 +1,616 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Logitech G29 -> Media Keys (USB interface driver)
*
* Proof-of-concept Linux kernel module for low-level programming course.
*
* This driver:
* - Binds to a Logitech G29 USB interface (VID/PID match)
* - Receives 12-byte input reports via an interrupt-IN URB
* - Parses the report into a normalized state (Stage A)
* - Translates selected signals into media key events (Stage B)
*
* Stage A is designed to remain stable across different mapping policies.
* Stage B is designed to be replaced/extended by swapping mapping tables
* or adding per-signal handler functions.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/input.h>
#include <linux/input.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/hid.h>
#include "g29_usb.h"
MODULE_AUTHOR("LLP group 16");
MODULE_DESCRIPTION("Logitech G29 USB driver");
MODULE_LICENSE("GPL");
enum g29_mode {
G29_MODE_MEDIA = 0,
G29_MODE_WASD = 1,
G29_MODE_MOUSE = 2,
};
static int mode = G29_MODE_MEDIA;
module_param(mode, int, 0644);
MODULE_PARM_DESC(mode, "Initial mode (0=MEDIA, 1=WASD, 2=MOUSE)");
/* Steering curve exponent (100 = linear, 200 = squared, 150 = ^1.5)
* Higher values reduce sensitivity at low steering angles.
*/
static int steer_curve = 200;
module_param(steer_curve, int, 0644);
MODULE_PARM_DESC(steer_curve, "Steering sensitivity curve (100=linear, 200=squared, default=200)");
static int steer_deadzone = 10;
module_param(steer_deadzone, int, 0644);
MODULE_PARM_DESC(steer_deadzone, "Steering deadzone radius from center (default=10)");
static int gas_curve = 100;
module_param(gas_curve, int, 0644);
MODULE_PARM_DESC(gas_curve, "Gas pedal sensitivity curve (100=linear, 200=squared, default=200)");
static int clutch_curve = 100;
module_param(clutch_curve, int, 0644);
MODULE_PARM_DESC(clutch_curve, "Clutch pedal sensitivity curve (100=linear, 200=squared, default=200)");
#define NORMALIZATION_PRECISION 1000
struct g29_keymap {
u32 mask;
unsigned short keycode;
};
static const struct g29_keymap media_mode_keymap[] = {
/* Red rotary = volume */
{ G29_BTN_RED_CW, KEY_VOLUMEUP },
{ G29_BTN_RED_CCW, KEY_VOLUMEDOWN },
/* Return = play/pause */
{ G29_BTN_RETURN, KEY_PLAYPAUSE },
/* Plus/Minus = next/prev */
{ G29_BTN_R1, KEY_NEXTSONG },
{ G29_BTN_L1, KEY_PREVIOUSSONG },
};
static const struct g29_keymap mouse_mode_keymap[] = {
{ G29_BTN_X, BTN_LEFT },
{ G29_BTN_CIRCLE, BTN_RIGHT },
{ G29_BTN_TRIANGLE, BTN_MIDDLE },
{ G29_BTN_SQUARE, BTN_SIDE },
};
struct g29_dev {
char name[128];
char phys[64];
struct usb_device *udev;
struct input_dev *input;
struct urb *urb;
u8 *buf;
dma_addr_t buf_dma;
int maxp;
int interval;
int endpoint;
struct timer_list steer_timer;
struct timer_list mouse_timer;
u32 steer_phase_ms;
u32 phase_accumulator;
u32 gas_phase_accumulator;
u32 clutch_phase_accumulator;
enum g29_mode current_mode;
struct g29_state last;
};
static void g29_switch_mode(struct g29_dev *g29, enum g29_mode new_mode) {
if (g29->current_mode == new_mode)
return;
/* Stop timers when leaving modes */
if (g29->current_mode == G29_MODE_WASD) {
timer_delete_sync(&g29->steer_timer);
}
if (g29->current_mode == G29_MODE_MOUSE) {
timer_delete_sync(&g29->mouse_timer);
}
g29->current_mode = new_mode;
g29->phase_accumulator = 0;
g29->gas_phase_accumulator = 0;
g29->clutch_phase_accumulator = 0;
/* Start timers when entering modes */
if (new_mode == G29_MODE_WASD) {
mod_timer(&g29->steer_timer, jiffies + msecs_to_jiffies(2));
}
if (new_mode == G29_MODE_MOUSE) {
mod_timer(&g29->mouse_timer, jiffies + msecs_to_jiffies(10));
}
dev_info(&g29->udev->dev, "Switched to mode: %s\n",
new_mode == G29_MODE_MEDIA ? "MEDIA" :
new_mode == G29_MODE_WASD ? "WASD" : "MOUSE");
}
static int calc_adjusted_steering_distance(int distance) {
/* Apply non-linear steering curve:
* adjusted = (distance / MAX)^(curve/100) * MAX
*
* For curve=200 (squared): 5% input -> 0.25% output, 50% -> 25%, 100% -> 100%
* For curve=150 (^1.5): 5% input -> ~1.1% output, 50% -> ~35%, 100% -> 100%
* For curve=100 (linear): 5% input -> 5% output (no change)
*
* Using integer math: adjusted = (distance^2 / MAX) for curve=200
*/
if (steer_curve == 100) {
return distance;
}
if (steer_curve == 200) {
return(distance * distance) / WHEEL_MAX_DIST;
}
/* Generic power curve using normalized values (0-1000 range for precision)
* normalized = (distance * 1000) / WHEEL_MAX_DIST
* Apply power approximation, then scale back
*/
int normalized = (distance * NORMALIZATION_PRECISION) / WHEEL_MAX_DIST;
int powered;
if (steer_curve == 150) {
/* Approximate ^1.5 with (x * sqrt(x)) */
int sqrt_norm = int_sqrt(normalized * NORMALIZATION_PRECISION);
powered = (normalized * sqrt_norm) / NORMALIZATION_PRECISION;
} else {
/* Fallback: squared for any other value > 100 */
powered = (normalized * normalized) / NORMALIZATION_PRECISION;
}
return (powered * WHEEL_MAX_DIST) / NORMALIZATION_PRECISION;
}
static int calc_adjusted_pedal_distance(int pedal_pressure, int curve) {
if (curve == 100) {
return pedal_pressure;
}
if (curve == 200) {
return (pedal_pressure * pedal_pressure) / G29_PEDAL_RELEASED;
}
int normalized = (pedal_pressure * NORMALIZATION_PRECISION) / G29_PEDAL_RELEASED;
int powered;
if (curve == 150) {
int sqrt_norm = int_sqrt(normalized * NORMALIZATION_PRECISION);
powered = (normalized * sqrt_norm) / NORMALIZATION_PRECISION;
} else {
powered = (normalized * normalized) / NORMALIZATION_PRECISION;
}
return (powered * G29_PEDAL_RELEASED) / NORMALIZATION_PRECISION;
}
static void mouse_mode_timer_fn(struct timer_list *t) {
struct g29_dev *g29 = timer_container_of(g29, t, mouse_timer);
const int rot = le16_to_cpu(g29->last.rot_le);
int gas_pressure = G29_PEDAL_RELEASED - g29->last.gas;
int clutch_pressure = G29_PEDAL_RELEASED - g29->last.clt;
/* Calculate speed: positive for forward (gas), negative for backward (clutch) */
int speed = gas_pressure - clutch_pressure;
/* Apply deadzone to steering */
int effective_rot = rot;
if (abs(rot - WHEEL_CENTER) <= steer_deadzone) {
effective_rot = WHEEL_CENTER;
}
/* Calculate angle from wheel rotation
* Map wheel rotation to angle:
* - Center (32768) = 0° (straight forward)
* - Full left (0) = -180° (reverse)
* - Full right (65535) = +180° (reverse)
* We normalize to -1000 to +1000 representing -π to +π radians
*/
int angle_normalized = ((effective_rot - WHEEL_CENTER) * 1000) / WHEEL_CENTER;
/* Clamp angle to prevent overflow */
if (angle_normalized > 1000) angle_normalized = 1000;
if (angle_normalized < -1000) angle_normalized = -1000;
/* Calculate movement components using better trigonometric approximations:
* dx = sin(angle) * speed
* dy = cos(angle) * speed
*
* sin(x) ≈ x - x³/6 (Taylor series)
* cos(x) ≈ 1 - x²/2 + x⁴/24 (Taylor series)
*
* For angle_normalized in [-1000, 1000] representing [-π, +π]:
* This gives us full reverse when fully steered
*/
long angle_cubed = ((long)angle_normalized * angle_normalized * angle_normalized) / 1000000;
int sin_approx = (angle_normalized * 1000 - angle_cubed / 6) / 1000;
long angle_squared = ((long)angle_normalized * angle_normalized) / 1000;
long angle_fourth = (angle_squared * angle_squared) / 1000;
int cos_approx = 1000 - angle_squared / 2 + angle_fourth / 24;
int dx = (sin_approx * speed) / 1000;
int dy = -(cos_approx * speed) / 1000; /* Negative because forward is -Y */
/* Scale down the movement for reasonable mouse speed */
int scaled_dx = dx / 50;
int scaled_dy = dy / 50;
/* Report mouse movement if there's any */
if (scaled_dx != 0 || scaled_dy != 0) {
input_report_rel(g29->input, REL_X, scaled_dx);
input_report_rel(g29->input, REL_Y, scaled_dy);
input_sync(g29->input);
}
/* Reschedule timer if still in mouse mode */
if (g29->current_mode == G29_MODE_MOUSE)
mod_timer(&g29->mouse_timer, jiffies + msecs_to_jiffies(10));
}
static void wasd_mode_timer_fn(struct timer_list *t) {
struct g29_dev *g29 = timer_container_of(g29, t, steer_timer);
const int rot = le16_to_cpu(g29->last.rot_le);
int effective_rot = rot;
int distance_from_center = abs(rot - WHEEL_CENTER);
if (distance_from_center <= steer_deadzone) {
effective_rot = WHEEL_CENTER;
}
int distance_to_center = abs(effective_rot - WHEEL_CENTER);
int adjusted_distance = calc_adjusted_steering_distance(distance_to_center);
/* Phase accumulator approach:
* Accumulate the adjusted distance on each tick.
* When it exceeds the max distance, press the key and wrap.
* This gives us a duty cycle of (adjusted_distance / WHEEL_MAX_DIST).
*
* Examples (with curve=200):
* 5% steering -> ~0.25% press rate
* 50% steering -> 25% press rate
* 100% steering -> 100% press rate (every tick)
*/
g29->phase_accumulator += adjusted_distance;
bool press_key;
if (g29->phase_accumulator >= WHEEL_MAX_DIST) {
g29->phase_accumulator -= WHEEL_MAX_DIST;
press_key = true;
} else {
press_key = false;
}
input_report_key(g29->input, KEY_A, press_key && (effective_rot < WHEEL_CENTER));
input_report_key(g29->input, KEY_D, press_key && (effective_rot >= WHEEL_CENTER));
/* Gas pedal (0xFF=up, 0x00=down) -> W key */
int gas_pressure = 0xFF - g29->last.gas;
int gas_adjusted = calc_adjusted_pedal_distance(gas_pressure, gas_curve);
g29->gas_phase_accumulator += gas_adjusted;
bool press_w = false;
if (g29->gas_phase_accumulator >= G29_PEDAL_RELEASED) {
g29->gas_phase_accumulator -= G29_PEDAL_RELEASED;
press_w = true;
}
/* Clutch pedal (0xFF=up, 0x00=down) -> S key */
int clutch_pressure = 0xFF - g29->last.clt;
int clutch_adjusted = calc_adjusted_pedal_distance(clutch_pressure, clutch_curve);
g29->clutch_phase_accumulator += clutch_adjusted;
bool press_s = false;
if (g29->clutch_phase_accumulator >= G29_PEDAL_RELEASED) {
g29->clutch_phase_accumulator -= G29_PEDAL_RELEASED;
press_s = true;
}
input_report_key(g29->input, KEY_W, press_w);
input_report_key(g29->input, KEY_S, press_s);
input_sync(g29->input);
if (g29->current_mode == G29_MODE_WASD)
mod_timer(&g29->steer_timer, jiffies + msecs_to_jiffies(2));
}
static void process_media_mode(struct g29_dev *g29, const struct g29_state *cur, const struct g29_state *prev) {
const u32 pressed = le32_to_cpu(cur->buttons_le & ~prev->buttons_le);
const u32 released = le32_to_cpu(~cur->buttons_le & prev->buttons_le);
for (int i = 0; i < ARRAY_SIZE(media_mode_keymap); i++) {
const struct g29_keymap *k = &media_mode_keymap[i];
if (pressed & k->mask) {
input_report_key(g29->input, k->keycode, 1);
}
if (released & k->mask) {
input_report_key(g29->input, k->keycode, 0);
}
}
input_sync(g29->input);
}
static void process_wasd_mode(struct g29_dev *g29, const struct g29_state *cur, const struct g29_state *prev) {
/* WASD mode is handled by the timer function (g29_steer_timer_fn) */
/* No additional processing needed here */
}
static void process_mouse_mode(struct g29_dev *g29, const struct g29_state *cur, const struct g29_state *prev) {
const u32 pressed = le32_to_cpu(cur->buttons_le & ~prev->buttons_le);
const u32 released = le32_to_cpu(~cur->buttons_le & prev->buttons_le);
for (int i = 0; i < ARRAY_SIZE(mouse_mode_keymap); i++) {
const struct g29_keymap *k = &mouse_mode_keymap[i];
if (pressed & k->mask) {
input_report_key(g29->input, k->keycode, 1);
}
if (released & k->mask) {
input_report_key(g29->input, k->keycode, 0);
}
}
if (pressed & G29_BTN_RED_CW) {
input_report_rel(g29->input, REL_WHEEL, 1);
}
if (pressed & G29_BTN_RED_CCW) {
input_report_rel(g29->input, REL_WHEEL, -1);
}
input_sync(g29->input);
}
static void g29_check_mode_switch(struct g29_dev *g29, const struct g29_state *cur, const struct g29_state *prev) {
u32 pressed = le32_to_cpu(cur->buttons_le & ~prev->buttons_le);
if (pressed & G29_BTN_SHARE) {
g29_switch_mode(g29, G29_MODE_MEDIA);
} else if (pressed & G29_BTN_OPTION) {
g29_switch_mode(g29, G29_MODE_WASD);
} else if (pressed & G29_BTN_PS3_LOGO) {
g29_switch_mode(g29, G29_MODE_MOUSE);
}
}
static void g29_process_report(struct g29_dev *g29, const u8 *data, unsigned int len) {
if (len < 12) return;
struct g29_state *cur = (void *) data;
g29_check_mode_switch(g29, cur, &g29->last);
switch (g29->current_mode) {
case G29_MODE_MEDIA:
process_media_mode(g29, cur, &g29->last);
break;
case G29_MODE_WASD:
process_wasd_mode(g29, cur, &g29->last);
break;
case G29_MODE_MOUSE:
process_mouse_mode(g29, cur, &g29->last);
break;
}
g29->last = *cur;
}
static void g29_urb_complete(struct urb *urb) {
struct g29_dev *g29 = urb->context;
int ret;
switch (urb->status) {
case 0:
break; /* success */
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
return; /* cancelled/disconnected */
default:
goto resubmit; /* transient error */
}
g29_process_report(g29, g29->buf, urb->actual_length);
resubmit:
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret)
dev_err(&g29->udev->dev, "usb_submit_urb failed: %d\n", ret);
}
static int g29_input_open(struct input_dev *input) {
struct g29_dev *g29 = input_get_drvdata(input);
g29->urb->dev = g29->udev;
if (usb_submit_urb(g29->urb, GFP_KERNEL))
return -EIO;
g29_switch_mode(g29, mode);
return 0;
}
static void g29_input_close(struct input_dev *input) {
struct g29_dev *g29 = input_get_drvdata(input);
if (g29->current_mode == G29_MODE_WASD)
timer_delete_sync(&g29->steer_timer);
if (g29->current_mode == G29_MODE_MOUSE)
timer_delete_sync(&g29->mouse_timer);
usb_kill_urb(g29->urb);
}
static int g29_probe(struct usb_interface *intf, const struct usb_device_id *id) {
struct usb_device *udev = interface_to_usbdev(intf);
int ret;
/* Find an interrupt IN endpoint capable of carrying the 12-byte report. */
struct usb_endpoint_descriptor *ep = NULL;
const struct usb_host_interface *alts = intf->cur_altsetting;
for (int i = 0; i < alts->desc.bNumEndpoints; i++) {
struct usb_endpoint_descriptor *d = &alts->endpoint[i].desc;
if (!usb_endpoint_is_int_in(d))
continue;
if (usb_maxpacket(udev, usb_rcvintpipe(udev, d->bEndpointAddress)) >= 12) {
ep = d;
break;
}
}
if (!ep) return -ENODEV;
struct g29_dev *g29;
if ((g29 = kzalloc(sizeof(*g29), GFP_KERNEL)) == NULL) {
return -ENOMEM;
}
struct input_dev *input;
if ((input = input_allocate_device()) == NULL) {
ret = -ENOMEM;
goto err_free_g29;
}
g29->udev = udev;
g29->input = input;
g29->endpoint = usb_endpoint_num(ep);
g29->maxp = usb_endpoint_maxp(ep);
g29->interval = ep->bInterval;
memset(&g29->last, 0, sizeof(g29->last));
g29->current_mode = mode; /* Initialize to module parameter */
timer_setup(&g29->steer_timer, wasd_mode_timer_fn, 0);
timer_setup(&g29->mouse_timer, mouse_mode_timer_fn, 0);
if ((g29->buf = usb_alloc_coherent(udev, g29->maxp, GFP_KERNEL, &g29->buf_dma)) == NULL) {
ret = -ENOMEM;
goto err_free_input;
}
if ((g29->urb = usb_alloc_urb(0, GFP_KERNEL)) == NULL) {
ret = -ENOMEM;
goto err_free_buf;
}
if (udev->manufacturer)
strscpy(g29->name, udev->manufacturer, sizeof(g29->name));
if (udev->product) {
if (udev->manufacturer)
strlcat(g29->name, " ", sizeof(g29->name));
strlcat(g29->name, udev->product, sizeof(g29->name));
}
if (!strlen(g29->name))
snprintf(g29->name, sizeof(g29->name),
"Logitech G29 USB %04x:%04x",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct));
usb_make_path(udev, g29->phys, sizeof(g29->phys));
strlcat(g29->phys, "/input0", sizeof(g29->phys));
input->name = g29->name;
input->phys = g29->phys;
usb_to_input_id(udev, &input->id);
input->dev.parent = &intf->dev;
__set_bit(EV_KEY, input->evbit);
__set_bit(EV_REL, input->evbit);
/* Media mode keys */
input_set_capability(input, EV_KEY, KEY_VOLUMEUP);
input_set_capability(input, EV_KEY, KEY_VOLUMEDOWN);
input_set_capability(input, EV_KEY, KEY_PLAYPAUSE);
input_set_capability(input, EV_KEY, KEY_NEXTSONG);
input_set_capability(input, EV_KEY, KEY_PREVIOUSSONG);
/* WASD mode keys */
input_set_capability(input, EV_KEY, KEY_W);
input_set_capability(input, EV_KEY, KEY_A);
input_set_capability(input, EV_KEY, KEY_S);
input_set_capability(input, EV_KEY, KEY_D);
/* Mouse mode capabilities */
input_set_capability(input, EV_KEY, BTN_LEFT);
input_set_capability(input, EV_KEY, BTN_RIGHT);
input_set_capability(input, EV_KEY, BTN_MIDDLE);
input_set_capability(input, EV_REL, REL_X);
input_set_capability(input, EV_REL, REL_Y);
input_set_capability(input, EV_REL, REL_WHEEL);
input_set_drvdata(input, g29);
input->open = g29_input_open;
input->close = g29_input_close;
usb_fill_int_urb(g29->urb, udev, usb_rcvintpipe(udev, ep->bEndpointAddress),
g29->buf, g29->maxp,
g29_urb_complete, g29, ep->bInterval);
g29->urb->transfer_dma = g29->buf_dma;
g29->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
if ((ret = input_register_device(input)) != 0) {
goto err_free_urb;
}
usb_set_intfdata(intf, g29);
dev_info(&intf->dev,
"G29 media driver bound (ep=%02x interval=%u)\n",
ep->bEndpointAddress, ep->bInterval);
return 0;
err_free_urb:
usb_free_urb(g29->urb);
err_free_buf:
usb_free_coherent(udev, g29->maxp, g29->buf, g29->buf_dma);
err_free_input:
input_free_device(input);
err_free_g29:
kfree(g29);
return ret;
}
static void g29_disconnect(struct usb_interface *intf) {
struct g29_dev *g29 = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
if (!g29) return;
usb_kill_urb(g29->urb);
input_unregister_device(g29->input);
usb_free_urb(g29->urb);
usb_free_coherent(interface_to_usbdev(intf), g29->maxp, g29->buf, g29->buf_dma);
kfree(g29);
dev_info(&intf->dev, "G29 driver disconnected\n");
}
static const struct usb_device_id g29_id_table[] = {
{ USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G29) },
{ USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G29_ALT) },
{ }
};
MODULE_DEVICE_TABLE(usb, g29_id_table);
static struct usb_driver g29_driver = {
.name = "g29_usb",
.id_table = g29_id_table,
.probe = g29_probe,
.disconnect = g29_disconnect,
};
module_usb_driver(g29_driver);

76
g29-wheel/g29_usb.h Normal file
View File

@@ -0,0 +1,76 @@
/*
* Logitech G29 USB/HID Protocol Definitions
*/
#ifndef G29_USB_H
#define G29_USB_H
#include <linux/types.h>
#define USB_VENDOR_ID_LOGITECH 0x046d
#define USB_DEVICE_ID_LOGITECH_G29 0xc24f
#define USB_DEVICE_ID_LOGITECH_G29_ALT 0xc260
#define G29_BTN_X 0x00000010u
#define G29_BTN_SQUARE 0x00000020u
#define G29_BTN_CIRCLE 0x00000040u
#define G29_BTN_TRIANGLE 0x00000080u
#define G29_BTN_R1 0x00000100u
#define G29_BTN_L1 0x00000200u
#define G29_BTN_R2 0x00000400u
#define G29_BTN_L2 0x00000800u
#define G29_BTN_SHARE 0x00001000u
#define G29_BTN_OPTION 0x00002000u
#define G29_BTN_R3 0x00004000u
#define G29_BTN_L3 0x00008000u
#define G29_BTN_GEAR_1 0x00010000u
#define G29_BTN_GEAR_2 0x00020000u
#define G29_BTN_GEAR_3 0x00040000u
#define G29_BTN_GEAR_4 0x00080000u
#define G29_BTN_GEAR_5 0x00100000u
#define G29_BTN_GEAR_6 0x00200000u
#define G29_BTN_GEAR_REV 0x00400000u
#define G29_BTN_PLUS 0x00800000u
#define G29_BTN_MINUS 0x01000000u
#define G29_BTN_RED_CW 0x02000000u
#define G29_BTN_RED_CCW 0x04000000u
#define G29_BTN_RETURN 0x08000000u
#define G29_BTN_PS3_LOGO 0xF0000000u
#define G29_DPAD_MASK 0x0000000Eu
#define G29_DPAD_UP 0x00000000u
#define G29_DPAD_RIGHT 0x00000002u
#define G29_DPAD_DOWN 0x00000004u
#define G29_DPAD_LEFT 0x00000006u
#define G29_DPAD_NONE 0x00000008u
#define G29_WHEEL_MIN_ROTATION 0x0000
#define G29_WHEEL_MAX_ROTATION 0xFFFF
#define G29_PEDAL_RELEASED 0xFF
#define G29_PEDAL_PRESSED 0x00
#define G29_PEDAL_THRESHOLD 0x80
#define G29_GEARSHIFT_X_LEFT 0x30 /* Gears 1-2 */
#define G29_GEARSHIFT_X_CENTER 0x80 /* Gears 3-4 */
#define G29_GEARSHIFT_X_RIGHT 0xB0 /* Gears 5-6-R */
#define G29_GEARSHIFT_Y_TOP 0xD0 /* Gears 1-3-5 */
#define G29_GEARSHIFT_Y_BOTTOM 0x40 /* Gears 2-4-6-R */
#define G29_GEARSHIFT_Z_NEUTRAL 0x9C /* Neutral position */
#define G29_GEARSHIFT_Z_PRESSED 0xDC /* Pressed down */
#define WHEEL_CENTER 32768
#define WHEEL_MAX_DIST 32768
struct g29_state {
u32 buttons_le; /* Button bitmask (little-endian) */
u16 rot_le; /* Wheel rotation (little-endian) */
u8 gas; /* Gas pedal (0xFF=up, 0x00=down) */
u8 brk; /* Brake pedal (0xFF=up, 0x00=down) */
u8 clt; /* Clutch pedal (0xFF=up, 0x00=down) */
u8 gr_x; /* Gearshift X-axis */
u8 gr_y; /* Gearshift Y-axis */
u8 gr_z; /* Gearshift Z-axis */
} __packed;
#endif

View File

@@ -45,7 +45,7 @@ Logitech G29 USB Protocol
- `0x02000000` - Red rotation clockwise - `0x02000000` - Red rotation clockwise
- `0x04000000` - Red rotation counterclockwise - `0x04000000` - Red rotation counterclockwise
- `0x08000000` - Return - `0x08000000` - Return
- `0xF0000000` - ? - `0xF0000000` - Playstation 3 Logo Button (verify)
- `Rot`: Wheel rotation (little-endian). `0x0000` (leftmost) - `0xFFFF` (rightmost). - `Rot`: Wheel rotation (little-endian). `0x0000` (leftmost) - `0xFFFF` (rightmost).
- `Gas`: Gas pedal. `0xFF` (up, default) - `0x00` (down). - `Gas`: Gas pedal. `0xFF` (up, default) - `0x00` (down).
- `Brk`: Brake pedal. `0xFF` (up, default) - `0x00` (down). - `Brk`: Brake pedal. `0xFF` (up, default) - `0x00` (down).

View File

@@ -1,357 +1,357 @@
// SPDX-License-Identifier: GPL-2.0 // SPDX-License-Identifier: GPL-2.0
/* /*
* Simple USB Mouse Driver * Simple USB Mouse Driver
* *
* A minimal USB HID Boot Protocol mouse driver for learning purposes. * A minimal USB HID Boot Protocol mouse driver for learning purposes.
* This driver can bind to any standard USB mouse that supports the * This driver can bind to any standard USB mouse that supports the
* HID Boot Protocol. * HID Boot Protocol.
*/ */
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/usb.h> #include <linux/usb.h>
#include <linux/usb/input.h> #include <linux/usb/input.h>
#include <linux/hid.h> #include <linux/hid.h>
#include <linux/input.h> #include <linux/input.h>
#define DRIVER_AUTHOR "Testor" #define DRIVER_AUTHOR "Testor"
#define DRIVER_DESC "Simple USB Mouse Driver" #define DRIVER_DESC "Simple USB Mouse Driver"
MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC); MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
/* /*
* Driver context structure * Driver context structure
* This holds all the data we need for each connected mouse * This holds all the data we need for each connected mouse
*/ */
struct simple_usb_mouse { struct simple_usb_mouse {
char name[128]; /* Device name */ char name[128]; /* Device name */
char phys[64]; /* Physical path */ char phys[64]; /* Physical path */
struct usb_device *usbdev; /* USB device */ struct usb_device *usbdev; /* USB device */
struct input_dev *input_dev; /* Input device for reporting events */ struct input_dev *input_dev; /* Input device for reporting events */
struct urb *irq; /* URB for interrupt transfers */ struct urb *irq; /* URB for interrupt transfers */
unsigned char *data; /* Data buffer (8 bytes for mouse data) */ unsigned char *data; /* Data buffer (8 bytes for mouse data) */
dma_addr_t data_dma; /* DMA address for data buffer */ dma_addr_t data_dma; /* DMA address for data buffer */
}; };
/* /*
* IRQ handler - called when mouse sends data * IRQ handler - called when mouse sends data
* *
* Cooler Master MM710 format (8 bytes): * Cooler Master MM710 format (8 bytes):
* Byte 0: Button states * Byte 0: Button states
* Bit 0: Left button * Bit 0: Left button
* Bit 1: Right button * Bit 1: Right button
* Bit 2: Middle button * Bit 2: Middle button
* Bit 3: Side button * Bit 3: Side button
* Bit 4: Extra button * Bit 4: Extra button
* Bytes 1: (unused) * Bytes 1: (unused)
* Bytes 2-3: X movement (16-bit signed, little-endian) * Bytes 2-3: X movement (16-bit signed, little-endian)
* Bytes 4-5: Y movement (16-bit signed, little-endian) * Bytes 4-5: Y movement (16-bit signed, little-endian)
* Byte 6: Wheel movement (8-bit signed) * Byte 6: Wheel movement (8-bit signed)
* Byte 7: (unused) * Byte 7: (unused)
*/ */
static void simple_mouse_irq(struct urb *urb) static void simple_mouse_irq(struct urb *urb)
{ {
struct simple_usb_mouse *mouse = urb->context; struct simple_usb_mouse *mouse = urb->context;
unsigned char *data = mouse->data; unsigned char *data = mouse->data;
struct input_dev *dev = mouse->input_dev; struct input_dev *dev = mouse->input_dev;
int status; int status;
int16_t x_movement, y_movement; int16_t x_movement, y_movement;
/* Check URB status */ /* Check URB status */
switch (urb->status) { switch (urb->status) {
case 0: case 0:
/* Success - process the data */ /* Success - process the data */
break; break;
case -ECONNRESET: case -ECONNRESET:
case -ENOENT: case -ENOENT:
case -ESHUTDOWN: case -ESHUTDOWN:
/* Device disconnected or URB killed - don't resubmit */ /* Device disconnected or URB killed - don't resubmit */
pr_debug("simple_mouse: URB stopped (status %d)\n", urb->status); pr_debug("simple_mouse: URB stopped (status %d)\n", urb->status);
return; return;
default: default:
/* Transient error - we'll resubmit and try again */ /* Transient error - we'll resubmit and try again */
pr_debug("simple_mouse: URB error (status %d)\n", urb->status); pr_debug("simple_mouse: URB error (status %d)\n", urb->status);
goto resubmit; goto resubmit;
} }
/* Debug: Print raw data bytes */ /* Debug: Print raw data bytes */
/* pr_info("simple_mouse: RAW DATA: [0]=%02x [1]=%02x [2]=%02x [3]=%02x [4]=%02x [5]=%02x [6]=%02x [7]=%02x\n", /* pr_info("simple_mouse: RAW DATA: [0]=%02x [1]=%02x [2]=%02x [3]=%02x [4]=%02x [5]=%02x [6]=%02x [7]=%02x\n",
data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); */ data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]); */
/* Report button states */ /* Report button states */
input_report_key(dev, BTN_LEFT, data[0] & 0x01); input_report_key(dev, BTN_LEFT, data[0] & 0x01);
input_report_key(dev, BTN_RIGHT, data[0] & 0x02); input_report_key(dev, BTN_RIGHT, data[0] & 0x02);
input_report_key(dev, BTN_MIDDLE, data[0] & 0x04); input_report_key(dev, BTN_MIDDLE, data[0] & 0x04);
input_report_key(dev, BTN_SIDE, data[0] & 0x08); input_report_key(dev, BTN_SIDE, data[0] & 0x08);
input_report_key(dev, BTN_EXTRA, data[0] & 0x10); input_report_key(dev, BTN_EXTRA, data[0] & 0x10);
/* Combine bytes for 16-bit movement (little-endian) */ /* Combine bytes for 16-bit movement (little-endian) */
x_movement = (int16_t)(data[2] | (data[3] << 8)); x_movement = (int16_t)(data[2] | (data[3] << 8));
y_movement = (int16_t)(data[4] | (data[5] << 8)); y_movement = (int16_t)(data[4] | (data[5] << 8));
/* Report movement (relative coordinates) */ /* Report movement (relative coordinates) */
input_report_rel(dev, REL_X, x_movement); input_report_rel(dev, REL_X, x_movement);
input_report_rel(dev, REL_Y, y_movement); input_report_rel(dev, REL_Y, y_movement);
input_report_rel(dev, REL_WHEEL, (signed char) data[6]); input_report_rel(dev, REL_WHEEL, (signed char) data[6]);
/* Sync - tell input subsystem we're done with this event */ /* Sync - tell input subsystem we're done with this event */
input_sync(dev); input_sync(dev);
resubmit: resubmit:
/* Resubmit URB to continue receiving data */ /* Resubmit URB to continue receiving data */
status = usb_submit_urb(urb, GFP_ATOMIC); status = usb_submit_urb(urb, GFP_ATOMIC);
if (status) { if (status) {
dev_err(&mouse->usbdev->dev, dev_err(&mouse->usbdev->dev,
"Failed to resubmit URB: %d\n", status); "Failed to resubmit URB: %d\n", status);
} }
} }
/* /*
* Called when device is opened (e.g., when an application reads from it) * Called when device is opened (e.g., when an application reads from it)
* We start the URB here to save resources when mouse isn't being used * We start the URB here to save resources when mouse isn't being used
*/ */
static int simple_mouse_open(struct input_dev *dev) static int simple_mouse_open(struct input_dev *dev)
{ {
struct simple_usb_mouse *mouse = input_get_drvdata(dev); struct simple_usb_mouse *mouse = input_get_drvdata(dev);
pr_info("simple_mouse: Device opened\n"); pr_info("simple_mouse: Device opened\n");
mouse->irq->dev = mouse->usbdev; mouse->irq->dev = mouse->usbdev;
if (usb_submit_urb(mouse->irq, GFP_KERNEL)) { if (usb_submit_urb(mouse->irq, GFP_KERNEL)) {
pr_err("simple_mouse: Failed to submit URB on open\n"); pr_err("simple_mouse: Failed to submit URB on open\n");
return -EIO; return -EIO;
} }
return 0; return 0;
} }
/* /*
* Called when device is closed * Called when device is closed
* Stop the URB to save resources * Stop the URB to save resources
*/ */
static void simple_mouse_close(struct input_dev *dev) static void simple_mouse_close(struct input_dev *dev)
{ {
struct simple_usb_mouse *mouse = input_get_drvdata(dev); struct simple_usb_mouse *mouse = input_get_drvdata(dev);
pr_info("simple_mouse: Device closed\n"); pr_info("simple_mouse: Device closed\n");
usb_kill_urb(mouse->irq); usb_kill_urb(mouse->irq);
} }
/* /*
* Probe function - called when a matching USB device is connected * Probe function - called when a matching USB device is connected
*/ */
static int simple_mouse_probe(struct usb_interface *intf, static int simple_mouse_probe(struct usb_interface *intf,
const struct usb_device_id *id) const struct usb_device_id *id)
{ {
struct usb_device *usbdev = interface_to_usbdev(intf); struct usb_device *usbdev = interface_to_usbdev(intf);
struct usb_host_interface *interface; struct usb_host_interface *interface;
struct usb_endpoint_descriptor *endpoint; struct usb_endpoint_descriptor *endpoint;
struct simple_usb_mouse *mouse; struct simple_usb_mouse *mouse;
struct input_dev *input_dev; struct input_dev *input_dev;
int pipe, maxp; int pipe, maxp;
int error = -ENOMEM; int error = -ENOMEM;
pr_info("simple_mouse: Probing device %04x:%04x\n", pr_info("simple_mouse: Probing device %04x:%04x\n",
le16_to_cpu(usbdev->descriptor.idVendor), le16_to_cpu(usbdev->descriptor.idVendor),
le16_to_cpu(usbdev->descriptor. idProduct)); le16_to_cpu(usbdev->descriptor. idProduct));
interface = intf->cur_altsetting; interface = intf->cur_altsetting;
/* Validate interface has exactly 1 endpoint */ /* Validate interface has exactly 1 endpoint */
if (interface->desc.bNumEndpoints != 1) { if (interface->desc.bNumEndpoints != 1) {
pr_err("simple_mouse: Interface has %d endpoints (expected 1)\n", pr_err("simple_mouse: Interface has %d endpoints (expected 1)\n",
interface->desc.bNumEndpoints); interface->desc.bNumEndpoints);
return -ENODEV; return -ENODEV;
} }
endpoint = &interface->endpoint[0]. desc; endpoint = &interface->endpoint[0]. desc;
/* Ensure it's an interrupt IN endpoint */ /* Ensure it's an interrupt IN endpoint */
if (! usb_endpoint_is_int_in(endpoint)) { if (! usb_endpoint_is_int_in(endpoint)) {
pr_err("simple_mouse: Endpoint is not interrupt IN\n"); pr_err("simple_mouse: Endpoint is not interrupt IN\n");
return -ENODEV; return -ENODEV;
} }
/* Calculate pipe and max packet size */ /* Calculate pipe and max packet size */
pipe = usb_rcvintpipe(usbdev, endpoint->bEndpointAddress); pipe = usb_rcvintpipe(usbdev, endpoint->bEndpointAddress);
maxp = usb_maxpacket(usbdev, pipe); maxp = usb_maxpacket(usbdev, pipe);
/* Allocate our context structure */ /* Allocate our context structure */
mouse = kzalloc(sizeof(struct simple_usb_mouse), GFP_KERNEL); mouse = kzalloc(sizeof(struct simple_usb_mouse), GFP_KERNEL);
if (!mouse) if (!mouse)
return -ENOMEM; return -ENOMEM;
/* Allocate input device */ /* Allocate input device */
input_dev = input_allocate_device(); input_dev = input_allocate_device();
if (!input_dev) { if (!input_dev) {
pr_err("simple_mouse: Failed to allocate input device\n"); pr_err("simple_mouse: Failed to allocate input device\n");
goto fail_input_alloc; goto fail_input_alloc;
} }
/* Allocate DMA-coherent buffer for USB data */ /* Allocate DMA-coherent buffer for USB data */
mouse->data = usb_alloc_coherent(usbdev, 8, GFP_KERNEL, mouse->data = usb_alloc_coherent(usbdev, 8, GFP_KERNEL,
&mouse->data_dma); &mouse->data_dma);
if (!mouse->data) { if (!mouse->data) {
pr_err("simple_mouse: Failed to allocate DMA buffer\n"); pr_err("simple_mouse: Failed to allocate DMA buffer\n");
goto fail_dma_alloc; goto fail_dma_alloc;
} }
/* Allocate URB */ /* Allocate URB */
mouse->irq = usb_alloc_urb(0, GFP_KERNEL); mouse->irq = usb_alloc_urb(0, GFP_KERNEL);
if (!mouse->irq) { if (!mouse->irq) {
pr_err("simple_mouse: Failed to allocate URB\n"); pr_err("simple_mouse: Failed to allocate URB\n");
goto fail_urb_alloc; goto fail_urb_alloc;
} }
/* Store references */ /* Store references */
mouse->usbdev = usbdev; mouse->usbdev = usbdev;
mouse->input_dev = input_dev; mouse->input_dev = input_dev;
/* Build device name from USB descriptors */ /* Build device name from USB descriptors */
if (usbdev->manufacturer) if (usbdev->manufacturer)
strscpy(mouse->name, usbdev->manufacturer, sizeof(mouse->name)); strscpy(mouse->name, usbdev->manufacturer, sizeof(mouse->name));
if (usbdev->product) { if (usbdev->product) {
if (usbdev->manufacturer) if (usbdev->manufacturer)
strlcat(mouse->name, " ", sizeof(mouse->name)); strlcat(mouse->name, " ", sizeof(mouse->name));
strlcat(mouse->name, usbdev->product, sizeof(mouse->name)); strlcat(mouse->name, usbdev->product, sizeof(mouse->name));
} }
/* Fallback name if no descriptors available */ /* Fallback name if no descriptors available */
if (! strlen(mouse->name)) { if (! strlen(mouse->name)) {
snprintf(mouse->name, sizeof(mouse->name), snprintf(mouse->name, sizeof(mouse->name),
"Simple USB Mouse %04x:%04x", "Simple USB Mouse %04x:%04x",
le16_to_cpu(usbdev->descriptor. idVendor), le16_to_cpu(usbdev->descriptor. idVendor),
le16_to_cpu(usbdev->descriptor.idProduct)); le16_to_cpu(usbdev->descriptor.idProduct));
} }
/* Build physical path */ /* Build physical path */
usb_make_path(usbdev, mouse->phys, sizeof(mouse->phys)); usb_make_path(usbdev, mouse->phys, sizeof(mouse->phys));
strlcat(mouse->phys, "/input0", sizeof(mouse->phys)); strlcat(mouse->phys, "/input0", sizeof(mouse->phys));
pr_info("simple_mouse: Device name: %s\n", mouse->name); pr_info("simple_mouse: Device name: %s\n", mouse->name);
pr_info("simple_mouse: Physical path: %s\n", mouse->phys); pr_info("simple_mouse: Physical path: %s\n", mouse->phys);
/* Configure input device */ /* Configure input device */
input_dev->name = mouse->name; input_dev->name = mouse->name;
input_dev->phys = mouse->phys; input_dev->phys = mouse->phys;
usb_to_input_id(usbdev, &input_dev->id); usb_to_input_id(usbdev, &input_dev->id);
input_dev->dev.parent = &intf->dev; input_dev->dev.parent = &intf->dev;
/* Set event types we can generate */ /* Set event types we can generate */
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL); input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REL);
/* Set button capabilities */ /* Set button capabilities */
input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) | input_dev->keybit[BIT_WORD(BTN_MOUSE)] = BIT_MASK(BTN_LEFT) |
BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE); BIT_MASK(BTN_RIGHT) | BIT_MASK(BTN_MIDDLE);
input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) | input_dev->keybit[BIT_WORD(BTN_MOUSE)] |= BIT_MASK(BTN_SIDE) |
BIT_MASK(BTN_EXTRA); BIT_MASK(BTN_EXTRA);
/* Set relative axis capabilities */ /* Set relative axis capabilities */
input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y) | input_dev->relbit[0] = BIT_MASK(REL_X) | BIT_MASK(REL_Y) |
BIT_MASK(REL_WHEEL); BIT_MASK(REL_WHEEL);
/* Set driver data and callbacks */ /* Set driver data and callbacks */
input_set_drvdata(input_dev, mouse); input_set_drvdata(input_dev, mouse);
input_dev->open = simple_mouse_open; input_dev->open = simple_mouse_open;
input_dev->close = simple_mouse_close; input_dev->close = simple_mouse_close;
/* Initialize URB */ /* Initialize URB */
usb_fill_int_urb(mouse->irq, usbdev, pipe, mouse->data, usb_fill_int_urb(mouse->irq, usbdev, pipe, mouse->data,
(maxp > 8 ? 8 : maxp), (maxp > 8 ? 8 : maxp),
simple_mouse_irq, mouse, endpoint->bInterval); simple_mouse_irq, mouse, endpoint->bInterval);
mouse->irq->transfer_dma = mouse->data_dma; mouse->irq->transfer_dma = mouse->data_dma;
mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; mouse->irq->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
/* Register input device with the kernel */ /* Register input device with the kernel */
error = input_register_device(mouse->input_dev); error = input_register_device(mouse->input_dev);
if (error) { if (error) {
pr_err("simple_mouse: Failed to register input device: %d\n", pr_err("simple_mouse: Failed to register input device: %d\n",
error); error);
goto fail_register; goto fail_register;
} }
/* Save our context in interface data */ /* Save our context in interface data */
usb_set_intfdata(intf, mouse); usb_set_intfdata(intf, mouse);
pr_info("simple_mouse: Probe successful!\n"); pr_info("simple_mouse: Probe successful!\n");
return 0; return 0;
/* Error handling - cleanup in reverse order */ /* Error handling - cleanup in reverse order */
fail_register: fail_register:
usb_free_urb(mouse->irq); usb_free_urb(mouse->irq);
fail_urb_alloc: fail_urb_alloc:
usb_free_coherent(usbdev, 8, mouse->data, mouse->data_dma); usb_free_coherent(usbdev, 8, mouse->data, mouse->data_dma);
fail_dma_alloc: fail_dma_alloc:
input_free_device(input_dev); input_free_device(input_dev);
fail_input_alloc: fail_input_alloc:
kfree(mouse); kfree(mouse);
return error; return error;
} }
/* /*
* Disconnect function - called when device is unplugged * Disconnect function - called when device is unplugged
*/ */
static void simple_mouse_disconnect(struct usb_interface *intf) static void simple_mouse_disconnect(struct usb_interface *intf)
{ {
struct simple_usb_mouse *mouse = usb_get_intfdata(intf); struct simple_usb_mouse *mouse = usb_get_intfdata(intf);
pr_info("simple_mouse: Device disconnected\n"); pr_info("simple_mouse: Device disconnected\n");
/* Clear interface data */ /* Clear interface data */
usb_set_intfdata(intf, NULL); usb_set_intfdata(intf, NULL);
if (mouse) { if (mouse) {
/* Stop URB */ /* Stop URB */
usb_kill_urb(mouse->irq); usb_kill_urb(mouse->irq);
/* Unregister from input subsystem */ /* Unregister from input subsystem */
input_unregister_device(mouse->input_dev); input_unregister_device(mouse->input_dev);
/* Free URB */ /* Free URB */
usb_free_urb(mouse->irq); usb_free_urb(mouse->irq);
/* Free DMA buffer */ /* Free DMA buffer */
usb_free_coherent(interface_to_usbdev(intf), 8, usb_free_coherent(interface_to_usbdev(intf), 8,
mouse->data, mouse->data_dma); mouse->data, mouse->data_dma);
/* Free context structure */ /* Free context structure */
kfree(mouse); kfree(mouse);
} }
} }
/* /*
* Device ID table - matches ANY USB HID Boot Protocol mouse * Device ID table - matches ANY USB HID Boot Protocol mouse
* This is the key to binding to any mouse! * This is the key to binding to any mouse!
*/ */
static const struct usb_device_id simple_mouse_id_table[] = { static const struct usb_device_id simple_mouse_id_table[] = {
{ {
USB_INTERFACE_INFO( USB_INTERFACE_INFO(
USB_INTERFACE_CLASS_HID, /* Class: HID */ USB_INTERFACE_CLASS_HID, /* Class: HID */
USB_INTERFACE_SUBCLASS_BOOT, /* Subclass: Boot */ USB_INTERFACE_SUBCLASS_BOOT, /* Subclass: Boot */
USB_INTERFACE_PROTOCOL_MOUSE /* Protocol: Mouse */ USB_INTERFACE_PROTOCOL_MOUSE /* Protocol: Mouse */
) )
}, },
{ } /* Terminating entry */ { } /* Terminating entry */
}; };
MODULE_DEVICE_TABLE(usb, simple_mouse_id_table); MODULE_DEVICE_TABLE(usb, simple_mouse_id_table);
/* /*
* USB Driver structure * USB Driver structure
*/ */
static struct usb_driver simple_mouse_driver = { static struct usb_driver simple_mouse_driver = {
.name = "simple_usb_mouse", .name = "simple_usb_mouse",
.probe = simple_mouse_probe, .probe = simple_mouse_probe,
.disconnect = simple_mouse_disconnect, .disconnect = simple_mouse_disconnect,
.id_table = simple_mouse_id_table, .id_table = simple_mouse_id_table,
}; };
/* /*
* Module init/exit * Module init/exit
*/ */
module_usb_driver(simple_mouse_driver); module_usb_driver(simple_mouse_driver);

View File

@@ -6,6 +6,11 @@ and binding USB devices to new drivers.
Note: USB drivers typically bind to interfaces, not devices. This script Note: USB drivers typically bind to interfaces, not devices. This script
handles both device-level and interface-level driver binding. handles both device-level and interface-level driver binding.
Wheel-friendly improvements:
- Finds kernel modules (*.ko) recursively under provided directories (e.g. ./build).
- Lets the user select which USB interface(s) to unbind/bind.
Default selection: all HID interfaces (bInterfaceClass==03).
""" """
import os import os
@@ -74,7 +79,7 @@ def get_usb_devices():
result = subprocess.run(['lsusb'], capture_output=True, text=True) result = subprocess.run(['lsusb'], capture_output=True, text=True)
for line in result.stdout.splitlines(): for line in result.stdout.splitlines():
# Format: Bus 001 Device 005: ID 046d:c52b Logitech, Inc. Unifying Receiver # Format: Bus 001 Device 005: ID 046d:c52b Logitech, Inc. Unifying Receiver
match = re.match(r'Bus (\d+) Device (\d+): ID ([0-9a-f]{4}):([0-9a-f]{4})\s+(.*)', line) match = re.match(r'Bus (\d+) Device (\d+): ID ([0-9a-f]{4}):([0-9a-f]{4})\s+(.*)', line, re.IGNORECASE)
if match: if match:
bus, dev, vendor, product, name = match.groups() bus, dev, vendor, product, name = match.groups()
key = f"{int(bus)}-{int(dev)}" key = f"{int(bus)}-{int(dev)}"
@@ -93,7 +98,7 @@ def get_usb_devices():
# Only process actual device entries (format: busnum-devnum or busnum-port.port...) # Only process actual device entries (format: busnum-devnum or busnum-port.port...)
device_name = device_path.name device_name = device_path.name
if not re.match(r'\d+-[\d.]+', device_name): if not re.match(r'\d+-[\d.]+$', device_name):
continue continue
# Skip root hubs # Skip root hubs
@@ -116,21 +121,9 @@ def get_usb_devices():
if driver_link.exists() and driver_link.is_symlink(): if driver_link.exists() and driver_link.is_symlink():
driver = driver_link.resolve().name driver = driver_link.resolve().name
# Try to get better name from lsusb
lsusb_key = f"{int(busnum)}-{int(devnum)}"
if lsusb_key in lsusb_output:
product = lsusb_output[lsusb_key]['name']
# Check if it's an input device by looking at device class or interfaces
is_input = False
device_class = (device_path / "bDeviceClass").read_text().strip() if (device_path / "bDeviceClass").exists() else "00"
# Class 03 is HID (Human Interface Device)
if device_class == "03":
is_input = True
# Check interfaces for HID class and collect interface information # Check interfaces for HID class and collect interface information
interfaces = [] interfaces = []
is_input = False
for interface_path in device_path.glob("*:*.*"): for interface_path in device_path.glob("*:*.*"):
if not interface_path.is_dir(): if not interface_path.is_dir():
continue continue
@@ -160,6 +153,12 @@ def get_usb_devices():
except Exception: except Exception:
continue continue
# Improve product string from lsusb when possible (safe conversion)
if busnum.isdigit() and devnum.isdigit():
lsusb_key = f"{int(busnum)}-{int(devnum)}"
if lsusb_key in lsusb_output:
product = lsusb_output[lsusb_key]['name']
devices.append({ devices.append({
'path': str(device_path), 'path': str(device_path),
'name': device_name, 'name': device_name,
@@ -172,7 +171,7 @@ def get_usb_devices():
'driver': driver, 'driver': driver,
'is_input': is_input, 'is_input': is_input,
'interfaces': interfaces, 'interfaces': interfaces,
'display_name': f"{manufacturer} {product}" 'display_name': f"{manufacturer} {product}".strip()
}) })
except Exception as e: except Exception as e:
@@ -217,42 +216,45 @@ def get_kernel_modules(directories=None):
modules = [] modules = []
seen_modules = set() # Track module names to avoid duplicates seen_modules = set() # Track module names to avoid duplicates
# Search for .ko files in each specified directory # Search for .ko files recursively in each specified directory
for directory in directories: for directory in directories:
if not os.path.exists(directory): if not os.path.exists(directory):
print_warning(f"Directory not found: {directory}") print_warning(f"Directory not found: {directory}")
continue continue
for ko_file in glob.glob(os.path.join(directory, "*.ko")): for root, dirs, files in os.walk(directory):
module_name = os.path.basename(ko_file) for filename in files:
module_path = os.path.abspath(ko_file) if not filename.endswith('.ko'):
continue
# Skip duplicates (same module name already found) module_name = filename
if module_name in seen_modules: module_path = os.path.abspath(os.path.join(root, filename))
continue
seen_modules.add(module_name)
# Get module info if possible # Skip duplicates (same module name already found)
try: if module_name in seen_modules:
result = subprocess.run(['modinfo', module_path], continue
capture_output=True, text=True) seen_modules.add(module_name)
description = "No description"
for line in result.stdout.splitlines():
if line.startswith("description:"):
description = line.split(":", 1)[1].strip()
break
modules.append({ # Get module info if possible
'name': module_name, try:
'path': module_path, result = subprocess.run(['modinfo', module_path], capture_output=True, text=True)
'description': description description = "No description"
}) for line in result.stdout.splitlines():
except Exception: if line.startswith("description:"):
modules.append({ description = line.split(":", 1)[1].strip()
'name': module_name, break
'path': module_path,
'description': "No description available" modules.append({
}) 'name': module_name,
'path': module_path,
'description': description
})
except Exception:
modules.append({
'name': module_name,
'path': module_path,
'description': "No description available"
})
return modules return modules
@@ -295,6 +297,55 @@ def get_user_choice(prompt, max_choice):
return None return None
def get_interface_selection(device):
"""Select which interface(s) to unbind/bind.
Default (Enter): all HID interfaces (class 03).
'a' selects all interfaces.
Comma-separated list selects specific interfaces.
"""
if not device.get('interfaces'):
return []
print_header("Interfaces")
for idx, iface in enumerate(device['interfaces'], 1):
driver_color = Colors.GREEN if iface['driver'] != "none" else Colors.YELLOW
print(f" {idx:>2}. {iface['name']}: class={iface['class']} subclass={iface['subclass']} protocol={iface['protocol']} driver={driver_color}{iface['driver']}{Colors.END}")
print("\nSelect interfaces to bind:")
print(" [Enter] AUTO: all HID interfaces (class 03)")
print(" a ALL interfaces")
print(" 1,3 Comma-separated list")
raw = input("Selection: ").strip().lower()
if raw == "":
picked = [i for i in device['interfaces'] if i['class'] == "03"]
if not picked:
print_warning("No HID interfaces found; selecting ALL interfaces.")
picked = list(device['interfaces'])
return picked
if raw == "a":
return list(device['interfaces'])
picked = []
parts = [p.strip() for p in raw.split(',') if p.strip()]
for p in parts:
try:
i = int(p)
if 1 <= i <= len(device['interfaces']):
picked.append(device['interfaces'][i - 1])
except ValueError:
continue
if not picked:
print_warning("No valid interfaces selected; using AUTO (all HID interfaces).")
picked = [i for i in device['interfaces'] if i['class'] == "03"]
if not picked:
picked = list(device['interfaces'])
return picked
def unbind_device(device, interface=None): def unbind_device(device, interface=None):
"""Unbind device interface from current driver""" """Unbind device interface from current driver"""
# If specific interface provided, unbind that interface # If specific interface provided, unbind that interface
@@ -355,8 +406,7 @@ def load_module(module):
"""Load kernel module""" """Load kernel module"""
try: try:
print(f"Loading module {module['name']}...") print(f"Loading module {module['name']}...")
result = subprocess.run(['insmod', module['path']], result = subprocess.run(['insmod', module['path']], capture_output=True, text=True)
capture_output=True, text=True)
if result.returncode == 0: if result.returncode == 0:
print_success(f"Successfully loaded {module['name']}") print_success(f"Successfully loaded {module['name']}")
return True return True
@@ -435,7 +485,7 @@ def bind_device(device, module, interface=None):
print_error(f"Failed to bind interface: {e}") print_error(f"Failed to bind interface: {e}")
return False return False
# Otherwise try to bind all HID mouse interfaces (class 03, subclass 01, protocol 02) # Default behavior (kept for backwards compatibility): try boot mouse, then device.
target_interfaces = [] target_interfaces = []
for iface in device.get('interfaces', []): for iface in device.get('interfaces', []):
# Look for HID Boot Mouse interfaces # Look for HID Boot Mouse interfaces
@@ -482,13 +532,35 @@ def bind_device(device, module, interface=None):
return success return success
def bind_interface_to_driver(interface_name, driver_name):
"""Bind a specific USB interface back to a given driver name (sysfs)."""
driver_path = Path(f"/sys/bus/usb/drivers/{driver_name}")
bind_path = driver_path / "bind"
if not driver_path.exists():
print_warning(f"Cannot restore: driver path not found: {driver_path}")
return False
if not bind_path.exists():
print_warning(f"Cannot restore: bind path not found: {bind_path}")
return False
try:
print(f"Restoring interface {interface_name} to driver {driver_name}...")
bind_path.write_text(interface_name)
print_success(f"Restored {interface_name} to {driver_name}")
return True
except Exception as e:
print_warning(f"Failed to restore interface {interface_name} to {driver_name}: {e}")
return False
def unload_module(module): def unload_module(module):
"""Unload kernel module""" """Unload kernel module"""
driver_name = get_module_driver_name(module) driver_name = get_module_driver_name(module)
try: try:
print(f"Unloading module {driver_name}...") print(f"Unloading module {driver_name}...")
result = subprocess.run(['rmmod', driver_name], result = subprocess.run(['rmmod', driver_name], capture_output=True, text=True)
capture_output=True, text=True)
if result.returncode == 0: if result.returncode == 0:
print_success(f"Successfully unloaded {driver_name}") print_success(f"Successfully unloaded {driver_name}")
return True return True
@@ -562,12 +634,16 @@ def main():
print(f" Device: {selected_device['name']}") print(f" Device: {selected_device['name']}")
print(f" Current driver: {selected_device['driver']}") print(f" Current driver: {selected_device['driver']}")
# Show interfaces # Step 2b: Select interfaces
if selected_device.get('interfaces'): selected_interfaces = get_interface_selection(selected_device)
print(f"\n Interfaces:") if not selected_interfaces:
for iface in selected_device['interfaces']: print_warning("No interfaces available/selected; cannot bind.")
driver_color = Colors.GREEN if iface['driver'] != "none" else Colors.YELLOW sys.exit(1)
print(f" {iface['name']}: class={iface['class']} subclass={iface['subclass']} protocol={iface['protocol']} driver={driver_color}{iface['driver']}{Colors.END}")
# Remember original per-interface drivers for restore attempts
original_interface_drivers = {}
for iface in selected_interfaces:
original_interface_drivers[iface['name']] = iface.get('driver', 'none')
# Step 3: List available kernel modules # Step 3: List available kernel modules
if len(args.directories) > 1 or args.directories[0] != '.': if len(args.directories) > 1 or args.directories[0] != '.':
@@ -594,17 +670,14 @@ def main():
# Step 5: Confirm operation # Step 5: Confirm operation
print(f"\n{Colors.YELLOW}This will:{Colors.END}") print(f"\n{Colors.YELLOW}This will:{Colors.END}")
if selected_device.get('interfaces'): print(f" 1. Unbind {len(selected_interfaces)} interface(s) from current driver(s)")
print(f" 1. Unbind interface(s) from current driver(s)")
else:
print(f" 1. Unbind {selected_device['name']} from {selected_device['driver']}")
if module_already_loaded: if module_already_loaded:
print(f" 2. Unload existing module {selected_module['name']}") print(f" 2. Unload existing module {selected_module['name']}")
print(f" 3. Load module {selected_module['name']} (fresh version)") print(f" 3. Load module {selected_module['name']} (fresh version)")
print(f" 4. Bind interface(s) to the new driver") print(f" 4. Bind selected interface(s) to the new driver")
else: else:
print(f" 2. Load module {selected_module['name']}") print(f" 2. Load module {selected_module['name']}")
print(f" 3. Bind interface(s) to the new driver") print(f" 3. Bind selected interface(s) to the new driver")
confirm = input(f"\n{Colors.BOLD}Proceed? (yes/no): {Colors.END}").strip().lower() confirm = input(f"\n{Colors.BOLD}Proceed? (yes/no): {Colors.END}").strip().lower()
if confirm not in ['yes', 'y']: if confirm not in ['yes', 'y']:
@@ -614,10 +687,11 @@ def main():
# Step 6: Perform operations # Step 6: Perform operations
print_header("\nExecuting operations...") print_header("\nExecuting operations...")
# Unbind from current driver # Unbind selected interfaces from current drivers
if not unbind_device(selected_device): for iface in selected_interfaces:
print_error("Failed to unbind device. Aborting.") if not unbind_device(selected_device, iface):
sys.exit(1) print_error("Failed to unbind interface. Aborting.")
sys.exit(1)
# Unload module if already loaded # Unload module if already loaded
if module_already_loaded: if module_already_loaded:
@@ -631,24 +705,36 @@ def main():
# Load new module # Load new module
if not load_module(selected_module): if not load_module(selected_module):
print_error("Failed to load module. Attempting to restore...") print_error("Failed to load module. Attempting to restore...")
# Try to rebind to original driver if available # Try to rebind each selected interface to its original driver
if selected_device['driver'] != "none": for iface in selected_interfaces:
bind_device(selected_device, {'name': selected_device['driver'] + '.ko'}) orig = original_interface_drivers.get(iface['name'], 'none')
if orig != 'none':
bind_interface_to_driver(iface['name'], orig)
sys.exit(1) sys.exit(1)
# Give kernel time to auto-probe and bind # Give kernel time to auto-probe and bind
print("Waiting for kernel to probe interfaces...") print("Waiting for kernel to probe interfaces...")
time.sleep(0.5) time.sleep(0.5)
# Bind to new driver # Bind selected interfaces to new driver
if not bind_device(selected_device, selected_module): bound_any = False
print_error("Failed to bind device to new driver.") for iface in selected_interfaces:
print_warning("Device may be unbound. You might need to reconnect it or bind manually.") if bind_device(selected_device, selected_module, iface):
bound_any = True
else:
# Restore interfaces that failed to bind to the new driver
orig = original_interface_drivers.get(iface['name'], 'none')
if orig != 'none':
bind_interface_to_driver(iface['name'], orig)
if not bound_any:
print_error("Failed to bind any interface to the new driver.")
print_warning("All selected interfaces were restored where possible. You might need to reconnect the device.")
sys.exit(1) sys.exit(1)
# Success # Success
print_header("\nOperation completed successfully!") print_header("\nOperation completed successfully!")
print(f"{Colors.GREEN}Device {selected_device['name']} is now using the new driver{Colors.END}") print(f"{Colors.GREEN}Device {selected_device['name']} interface(s) are now using the new driver{Colors.END}")
# Offer to show new device status # Offer to show new device status
print("\nVerifying device status...") print("\nVerifying device status...")

25
wasd-emulator/Makefile Normal file
View File

@@ -0,0 +1,25 @@
.PHONY: all
obj-m += wasd.o
KVER := $(shell uname -r)
KDIR ?= $(firstword $(wildcard /lib/modules/$(KVER)/build) $(wildcard /usr/lib/modules/$(KVER)/build))
PWD := $(shell pwd)
OUT := $(PWD)/out
all:
@if [ -z "$(KDIR)" ]; then \
echo "ERROR: kernel build dir not found for $(KVER). Install kernel headers (e.g. linux-headers)"; \
exit 2; \
fi
mkdir -p $(OUT)
$(MAKE) -C $(KDIR) M=$(PWD) modules
-mv -f -- *.ko *.mod.c *.o .*.o *.mod modules.order .*.cmd *.symvers $(OUT)
clean:
@if [ -z "$(KDIR)" ]; then \
echo "ERROR: kernel build dir not found for $(KVER)."; \
exit 2; \
fi
$(MAKE) -C $(KDIR) M=$(PWD) clean
rm -rf $(OUT) *.cmd *.order *.mod *.o

223
wasd-emulator/wasd.c Normal file
View File

@@ -0,0 +1,223 @@
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/usb.h>
#include <linux/usb/ch9.h>
#include <linux/usb/input.h>
#include <linux/input.h>
#include <linux/slab.h>
#define DRV_NAME "usb_steeringwheel_wasd"
struct wheel_evt {
uint32_t buttons_be;
uint16_t rot_be;
uint8_t gas;
uint8_t brk;
uint8_t clt;
uint8_t gr_x;
uint8_t gr_y;
uint8_t gr_z;
};
struct wheel {
struct usb_device *udev;
struct usb_interface *intf;
struct input_dev *input;
struct urb *irq_urb;
struct wheel_evt *irq_data;
dma_addr_t irq_dma;
int irq_len;
int irq_interval;
int irq_ep;
char phys[64];
atomic_t opened;
};
static int drv_open(struct input_dev *dev) {
struct wheel *w = input_get_drvdata(dev);
if (!w) return -ENODEV;
atomic_set(&w->opened, 1);
int ret;
if ((ret = usb_submit_urb(w->irq_urb, GFP_KERNEL))) {
atomic_set(&w->opened, 0);
return ret;
}
return 0;
}
static void drv_irq(struct urb *urb) {
// called every 2ms?
struct wheel *w = urb->context;
if (!w || !atomic_read(&w->opened))
return;
const int status = urb->status;
if (status) {
if (status == -ENOENT || status == -ECONNRESET || status == -ESHUTDOWN)
return;
dev_dbg(&w->intf->dev, "irq urb status %d\n", status);
goto resubmit;
}
const struct wheel_evt *data = w->irq_data;
const int rot = be16_to_cpu(data->buttons_be);
// TODO set keys according to ratio
input_report_key(w->input, KEY_W, data->gas <= 0x80);
input_report_key(w->input, KEY_S, data->brk <= 0x80);
input_report_key(w->input, KEY_A, rot <= 0x6000);
input_report_key(w->input, KEY_D, rot >= 0xA000);
input_sync(w->input);
resubmit:
usb_submit_urb(w->irq_urb, GFP_ATOMIC);
}
static void drv_close(struct input_dev *dev) {
struct wheel *w = input_get_drvdata(dev);
if (!w) return;
atomic_set(&w->opened, 0);
usb_kill_urb(w->irq_urb);
}
static int drv_probe(struct usb_interface *intf, const struct usb_device_id *id) {
struct usb_device *udev = interface_to_usbdev(intf);
int ret;
// Logitech G29
//if (le16_to_cpu(udev->descriptor.idVendor) != 0x046d || le16_to_cpu(udev->descriptor.idProduct) != 0xc24f)
// return -ENODEV;
struct usb_endpoint_descriptor *ep = NULL;
const struct usb_host_interface *alts = intf->cur_altsetting;
for (int i = 0; i < alts->desc.bNumEndpoints; i++) {
struct usb_endpoint_descriptor *d = &alts->endpoint[i].desc;
if (usb_endpoint_is_int_in(d)) {
ep = d;
break;
}
}
if (!ep) return -ENODEV;
struct wheel *w;
if ((w = kzalloc(sizeof(*w), GFP_KERNEL)) == NULL)
return -ENOMEM;
w->udev = usb_get_dev(udev);
w->intf = intf;
atomic_set(&w->opened, 0);
w->irq_ep = usb_endpoint_num(ep);
w->irq_len = usb_endpoint_maxp(ep);
w->irq_interval = ep->bInterval;
if ((w->irq_urb = usb_alloc_urb(0, GFP_KERNEL)) == NULL) {
ret = -ENOMEM;
goto err_free;
}
if ((w->irq_data = usb_alloc_coherent(udev, w->irq_len, GFP_KERNEL, &w->irq_dma)) == NULL) {
ret = -ENOMEM;
goto err_free_urb;
}
if ((w->input = input_allocate_device()) == NULL) {
ret = -ENOMEM;
goto err_free_buf;
}
usb_make_path(udev, w->phys, sizeof(w->phys));
strlcat(w->phys, "/input0", sizeof(w->phys));
w->input->name = "USB Boot Mouse (example driver)";
w->input->phys = w->phys;
usb_to_input_id(udev, &w->input->id);
w->input->dev.parent = &intf->dev;
w->input->open = drv_open;
w->input->close = drv_close;
input_set_drvdata(w->input, w);
usb_fill_int_urb(
w->irq_urb,
udev,
usb_rcvintpipe(udev, ep->bEndpointAddress),
w->irq_data,
w->irq_len,
drv_irq,
w,
w->irq_interval);
w->irq_urb->transfer_dma = w->irq_dma;
w->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
usb_set_intfdata(intf, w);
if ((ret = input_register_device(w->input)) != 0)
goto err_clear_intfdata;
dev_info(&intf->dev,
"bound to %04x:%04x, int-in ep 0x%02x maxp %u interval %u\n",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct),
ep->bEndpointAddress,
w->irq_len,
w->irq_interval);
return 0;
err_clear_intfdata:
usb_set_intfdata(intf, NULL);
input_free_device(w->input);
w->input = NULL;
err_free_buf:
usb_free_coherent(udev, w->irq_len, w->irq_data, w->irq_dma);
err_free_urb:
usb_free_urb(w->irq_urb);
err_free:
usb_put_dev(w->udev);
kfree(w);
return ret;
}
static void drv_disconnect(struct usb_interface *intf) {
struct wheel *w = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
if (!w) return;
if (w->input) {
input_unregister_device(w->input);
w->input = NULL;
}
usb_kill_urb(w->irq_urb);
usb_free_coherent(w->udev, w->irq_len, w->irq_data, w->irq_dma);
usb_free_urb(w->irq_urb);
usb_put_dev(w->udev);
kfree(w);
dev_info(&intf->dev, "disconnected\n");
}
static const struct usb_device_id drv_id_table[] = {
{ USB_DEVICE_INTERFACE_NUMBER(0x046d, 0xc24f, 0) },
{ USB_INTERFACE_INFO(3, 1, 1) },
{}
};
MODULE_DEVICE_TABLE(usb, drv_id_table);
static struct usb_driver drv = {
.name = DRV_NAME,
.probe = drv_probe,
.disconnect = drv_disconnect,
.id_table = drv_id_table,
};
module_usb_driver(drv);
MODULE_AUTHOR("Lorenz Stechauner");
MODULE_DESCRIPTION("Steering wheel WASD emulator");
MODULE_LICENSE("GPL");