Files
Device-Driver/g29-wheel/g29_usb.c

617 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Logitech G29 -> Media Keys (USB interface driver)
*
* Proof-of-concept Linux kernel module for low-level programming course.
*
* This driver:
* - Binds to a Logitech G29 USB interface (VID/PID match)
* - Receives 12-byte input reports via an interrupt-IN URB
* - Parses the report into a normalized state (Stage A)
* - Translates selected signals into media key events (Stage B)
*
* Stage A is designed to remain stable across different mapping policies.
* Stage B is designed to be replaced/extended by swapping mapping tables
* or adding per-signal handler functions.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/input.h>
#include <linux/input.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/hid.h>
#include "g29_usb.h"
MODULE_AUTHOR("LLP group 16");
MODULE_DESCRIPTION("Logitech G29 USB driver");
MODULE_LICENSE("GPL");
enum g29_mode {
G29_MODE_MEDIA = 0,
G29_MODE_WASD = 1,
G29_MODE_MOUSE = 2,
};
static int mode = G29_MODE_MEDIA;
module_param(mode, int, 0644);
MODULE_PARM_DESC(mode, "Initial mode (0=MEDIA, 1=WASD, 2=MOUSE)");
/* Steering curve exponent (100 = linear, 200 = squared, 150 = ^1.5)
* Higher values reduce sensitivity at low steering angles.
*/
static int steer_curve = 200;
module_param(steer_curve, int, 0644);
MODULE_PARM_DESC(steer_curve, "Steering sensitivity curve (100=linear, 200=squared, default=200)");
static int steer_deadzone = 10;
module_param(steer_deadzone, int, 0644);
MODULE_PARM_DESC(steer_deadzone, "Steering deadzone radius from center (default=10)");
static int gas_curve = 100;
module_param(gas_curve, int, 0644);
MODULE_PARM_DESC(gas_curve, "Gas pedal sensitivity curve (100=linear, 200=squared, default=200)");
static int clutch_curve = 100;
module_param(clutch_curve, int, 0644);
MODULE_PARM_DESC(clutch_curve, "Clutch pedal sensitivity curve (100=linear, 200=squared, default=200)");
#define NORMALIZATION_PRECISION 1000
struct g29_keymap {
u32 mask;
unsigned short keycode;
};
static const struct g29_keymap media_mode_keymap[] = {
/* Red rotary = volume */
{ G29_BTN_RED_CW, KEY_VOLUMEUP },
{ G29_BTN_RED_CCW, KEY_VOLUMEDOWN },
/* Return = play/pause */
{ G29_BTN_RETURN, KEY_PLAYPAUSE },
/* Plus/Minus = next/prev */
{ G29_BTN_R1, KEY_NEXTSONG },
{ G29_BTN_L1, KEY_PREVIOUSSONG },
};
static const struct g29_keymap mouse_mode_keymap[] = {
{ G29_BTN_X, BTN_LEFT },
{ G29_BTN_CIRCLE, BTN_RIGHT },
{ G29_BTN_TRIANGLE, BTN_MIDDLE },
{ G29_BTN_SQUARE, BTN_SIDE },
};
struct g29_dev {
char name[128];
char phys[64];
struct usb_device *udev;
struct input_dev *input;
struct urb *urb;
u8 *buf;
dma_addr_t buf_dma;
int maxp;
int interval;
int endpoint;
struct timer_list steer_timer;
struct timer_list mouse_timer;
u32 steer_phase_ms;
u32 phase_accumulator;
u32 gas_phase_accumulator;
u32 clutch_phase_accumulator;
enum g29_mode current_mode;
struct g29_state last;
};
static void g29_switch_mode(struct g29_dev *g29, enum g29_mode new_mode) {
if (g29->current_mode == new_mode)
return;
/* Stop timers when leaving modes */
if (g29->current_mode == G29_MODE_WASD) {
timer_delete_sync(&g29->steer_timer);
}
if (g29->current_mode == G29_MODE_MOUSE) {
timer_delete_sync(&g29->mouse_timer);
}
g29->current_mode = new_mode;
g29->phase_accumulator = 0;
g29->gas_phase_accumulator = 0;
g29->clutch_phase_accumulator = 0;
/* Start timers when entering modes */
if (new_mode == G29_MODE_WASD) {
mod_timer(&g29->steer_timer, jiffies + msecs_to_jiffies(2));
}
if (new_mode == G29_MODE_MOUSE) {
mod_timer(&g29->mouse_timer, jiffies + msecs_to_jiffies(10));
}
dev_info(&g29->udev->dev, "Switched to mode: %s\n",
new_mode == G29_MODE_MEDIA ? "MEDIA" :
new_mode == G29_MODE_WASD ? "WASD" : "MOUSE");
}
static int calc_adjusted_steering_distance(int distance) {
/* Apply non-linear steering curve:
* adjusted = (distance / MAX)^(curve/100) * MAX
*
* For curve=200 (squared): 5% input -> 0.25% output, 50% -> 25%, 100% -> 100%
* For curve=150 (^1.5): 5% input -> ~1.1% output, 50% -> ~35%, 100% -> 100%
* For curve=100 (linear): 5% input -> 5% output (no change)
*
* Using integer math: adjusted = (distance^2 / MAX) for curve=200
*/
if (steer_curve == 100) {
return distance;
}
if (steer_curve == 200) {
return(distance * distance) / WHEEL_MAX_DIST;
}
/* Generic power curve using normalized values (0-1000 range for precision)
* normalized = (distance * 1000) / WHEEL_MAX_DIST
* Apply power approximation, then scale back
*/
int normalized = (distance * NORMALIZATION_PRECISION) / WHEEL_MAX_DIST;
int powered;
if (steer_curve == 150) {
/* Approximate ^1.5 with (x * sqrt(x)) */
int sqrt_norm = int_sqrt(normalized * NORMALIZATION_PRECISION);
powered = (normalized * sqrt_norm) / NORMALIZATION_PRECISION;
} else {
/* Fallback: squared for any other value > 100 */
powered = (normalized * normalized) / NORMALIZATION_PRECISION;
}
return (powered * WHEEL_MAX_DIST) / NORMALIZATION_PRECISION;
}
static int calc_adjusted_pedal_distance(int pedal_pressure, int curve) {
if (curve == 100) {
return pedal_pressure;
}
if (curve == 200) {
return (pedal_pressure * pedal_pressure) / G29_PEDAL_RELEASED;
}
int normalized = (pedal_pressure * NORMALIZATION_PRECISION) / G29_PEDAL_RELEASED;
int powered;
if (curve == 150) {
int sqrt_norm = int_sqrt(normalized * NORMALIZATION_PRECISION);
powered = (normalized * sqrt_norm) / NORMALIZATION_PRECISION;
} else {
powered = (normalized * normalized) / NORMALIZATION_PRECISION;
}
return (powered * G29_PEDAL_RELEASED) / NORMALIZATION_PRECISION;
}
static void mouse_mode_timer_fn(struct timer_list *t) {
struct g29_dev *g29 = timer_container_of(g29, t, mouse_timer);
const int rot = le16_to_cpu(g29->last.rot_le);
int gas_pressure = G29_PEDAL_RELEASED - g29->last.gas;
int clutch_pressure = G29_PEDAL_RELEASED - g29->last.clt;
/* Calculate speed: positive for forward (gas), negative for backward (clutch) */
int speed = gas_pressure - clutch_pressure;
/* Apply deadzone to steering */
int effective_rot = rot;
if (abs(rot - WHEEL_CENTER) <= steer_deadzone) {
effective_rot = WHEEL_CENTER;
}
/* Calculate angle from wheel rotation
* Map wheel rotation to angle:
* - Center (32768) = 0° (straight forward)
* - Full left (0) = -180° (reverse)
* - Full right (65535) = +180° (reverse)
* We normalize to -1000 to +1000 representing -π to +π radians
*/
int angle_normalized = ((effective_rot - WHEEL_CENTER) * 1000) / WHEEL_CENTER;
/* Clamp angle to prevent overflow */
if (angle_normalized > 1000) angle_normalized = 1000;
if (angle_normalized < -1000) angle_normalized = -1000;
/* Calculate movement components using better trigonometric approximations:
* dx = sin(angle) * speed
* dy = cos(angle) * speed
*
* sin(x) ≈ x - x³/6 (Taylor series)
* cos(x) ≈ 1 - x²/2 + x⁴/24 (Taylor series)
*
* For angle_normalized in [-1000, 1000] representing [-π, +π]:
* This gives us full reverse when fully steered
*/
long angle_cubed = ((long)angle_normalized * angle_normalized * angle_normalized) / 1000000;
int sin_approx = (angle_normalized * 1000 - angle_cubed / 6) / 1000;
long angle_squared = ((long)angle_normalized * angle_normalized) / 1000;
long angle_fourth = (angle_squared * angle_squared) / 1000;
int cos_approx = 1000 - angle_squared / 2 + angle_fourth / 24;
int dx = (sin_approx * speed) / 1000;
int dy = -(cos_approx * speed) / 1000; /* Negative because forward is -Y */
/* Scale down the movement for reasonable mouse speed */
int scaled_dx = dx / 50;
int scaled_dy = dy / 50;
/* Report mouse movement if there's any */
if (scaled_dx != 0 || scaled_dy != 0) {
input_report_rel(g29->input, REL_X, scaled_dx);
input_report_rel(g29->input, REL_Y, scaled_dy);
input_sync(g29->input);
}
/* Reschedule timer if still in mouse mode */
if (g29->current_mode == G29_MODE_MOUSE)
mod_timer(&g29->mouse_timer, jiffies + msecs_to_jiffies(10));
}
static void wasd_mode_timer_fn(struct timer_list *t) {
struct g29_dev *g29 = timer_container_of(g29, t, steer_timer);
const int rot = le16_to_cpu(g29->last.rot_le);
int effective_rot = rot;
int distance_from_center = abs(rot - WHEEL_CENTER);
if (distance_from_center <= steer_deadzone) {
effective_rot = WHEEL_CENTER;
}
int distance_to_center = abs(effective_rot - WHEEL_CENTER);
int adjusted_distance = calc_adjusted_steering_distance(distance_to_center);
/* Phase accumulator approach:
* Accumulate the adjusted distance on each tick.
* When it exceeds the max distance, press the key and wrap.
* This gives us a duty cycle of (adjusted_distance / WHEEL_MAX_DIST).
*
* Examples (with curve=200):
* 5% steering -> ~0.25% press rate
* 50% steering -> 25% press rate
* 100% steering -> 100% press rate (every tick)
*/
g29->phase_accumulator += adjusted_distance;
bool press_key;
if (g29->phase_accumulator >= WHEEL_MAX_DIST) {
g29->phase_accumulator -= WHEEL_MAX_DIST;
press_key = true;
} else {
press_key = false;
}
input_report_key(g29->input, KEY_A, press_key && (effective_rot < WHEEL_CENTER));
input_report_key(g29->input, KEY_D, press_key && (effective_rot >= WHEEL_CENTER));
/* Gas pedal (0xFF=up, 0x00=down) -> W key */
int gas_pressure = 0xFF - g29->last.gas;
int gas_adjusted = calc_adjusted_pedal_distance(gas_pressure, gas_curve);
g29->gas_phase_accumulator += gas_adjusted;
bool press_w = false;
if (g29->gas_phase_accumulator >= G29_PEDAL_RELEASED) {
g29->gas_phase_accumulator -= G29_PEDAL_RELEASED;
press_w = true;
}
/* Clutch pedal (0xFF=up, 0x00=down) -> S key */
int clutch_pressure = 0xFF - g29->last.clt;
int clutch_adjusted = calc_adjusted_pedal_distance(clutch_pressure, clutch_curve);
g29->clutch_phase_accumulator += clutch_adjusted;
bool press_s = false;
if (g29->clutch_phase_accumulator >= G29_PEDAL_RELEASED) {
g29->clutch_phase_accumulator -= G29_PEDAL_RELEASED;
press_s = true;
}
input_report_key(g29->input, KEY_W, press_w);
input_report_key(g29->input, KEY_S, press_s);
input_sync(g29->input);
if (g29->current_mode == G29_MODE_WASD)
mod_timer(&g29->steer_timer, jiffies + msecs_to_jiffies(2));
}
static void process_media_mode(struct g29_dev *g29, const struct g29_state *cur, const struct g29_state *prev) {
const u32 pressed = le32_to_cpu(cur->buttons_le & ~prev->buttons_le);
const u32 released = le32_to_cpu(~cur->buttons_le & prev->buttons_le);
for (int i = 0; i < ARRAY_SIZE(media_mode_keymap); i++) {
const struct g29_keymap *k = &media_mode_keymap[i];
if (pressed & k->mask) {
input_report_key(g29->input, k->keycode, 1);
}
if (released & k->mask) {
input_report_key(g29->input, k->keycode, 0);
}
}
input_sync(g29->input);
}
static void process_wasd_mode(struct g29_dev *g29, const struct g29_state *cur, const struct g29_state *prev) {
/* WASD mode is handled by the timer function (g29_steer_timer_fn) */
/* No additional processing needed here */
}
static void process_mouse_mode(struct g29_dev *g29, const struct g29_state *cur, const struct g29_state *prev) {
const u32 pressed = le32_to_cpu(cur->buttons_le & ~prev->buttons_le);
const u32 released = le32_to_cpu(~cur->buttons_le & prev->buttons_le);
for (int i = 0; i < ARRAY_SIZE(mouse_mode_keymap); i++) {
const struct g29_keymap *k = &mouse_mode_keymap[i];
if (pressed & k->mask) {
input_report_key(g29->input, k->keycode, 1);
}
if (released & k->mask) {
input_report_key(g29->input, k->keycode, 0);
}
}
if (pressed & G29_BTN_RED_CW) {
input_report_rel(g29->input, REL_WHEEL, 1);
}
if (pressed & G29_BTN_RED_CCW) {
input_report_rel(g29->input, REL_WHEEL, -1);
}
input_sync(g29->input);
}
static void g29_check_mode_switch(struct g29_dev *g29, const struct g29_state *cur, const struct g29_state *prev) {
u32 pressed = le32_to_cpu(cur->buttons_le & ~prev->buttons_le);
if (pressed & G29_BTN_SHARE) {
g29_switch_mode(g29, G29_MODE_MEDIA);
} else if (pressed & G29_BTN_OPTION) {
g29_switch_mode(g29, G29_MODE_WASD);
} else if (pressed & G29_BTN_PS3_LOGO) {
g29_switch_mode(g29, G29_MODE_MOUSE);
}
}
static void g29_process_report(struct g29_dev *g29, const u8 *data, unsigned int len) {
if (len < 12) return;
struct g29_state *cur = (void *) data;
g29_check_mode_switch(g29, cur, &g29->last);
switch (g29->current_mode) {
case G29_MODE_MEDIA:
process_media_mode(g29, cur, &g29->last);
break;
case G29_MODE_WASD:
process_wasd_mode(g29, cur, &g29->last);
break;
case G29_MODE_MOUSE:
process_mouse_mode(g29, cur, &g29->last);
break;
}
g29->last = *cur;
}
static void g29_urb_complete(struct urb *urb) {
struct g29_dev *g29 = urb->context;
int ret;
switch (urb->status) {
case 0:
break; /* success */
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
return; /* cancelled/disconnected */
default:
goto resubmit; /* transient error */
}
g29_process_report(g29, g29->buf, urb->actual_length);
resubmit:
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret)
dev_err(&g29->udev->dev, "usb_submit_urb failed: %d\n", ret);
}
static int g29_input_open(struct input_dev *input) {
struct g29_dev *g29 = input_get_drvdata(input);
g29->urb->dev = g29->udev;
if (usb_submit_urb(g29->urb, GFP_KERNEL))
return -EIO;
g29_switch_mode(g29, mode);
return 0;
}
static void g29_input_close(struct input_dev *input) {
struct g29_dev *g29 = input_get_drvdata(input);
if (g29->current_mode == G29_MODE_WASD)
timer_delete_sync(&g29->steer_timer);
if (g29->current_mode == G29_MODE_MOUSE)
timer_delete_sync(&g29->mouse_timer);
usb_kill_urb(g29->urb);
}
static int g29_probe(struct usb_interface *intf, const struct usb_device_id *id) {
struct usb_device *udev = interface_to_usbdev(intf);
int ret;
/* Find an interrupt IN endpoint capable of carrying the 12-byte report. */
struct usb_endpoint_descriptor *ep = NULL;
const struct usb_host_interface *alts = intf->cur_altsetting;
for (int i = 0; i < alts->desc.bNumEndpoints; i++) {
struct usb_endpoint_descriptor *d = &alts->endpoint[i].desc;
if (!usb_endpoint_is_int_in(d))
continue;
if (usb_maxpacket(udev, usb_rcvintpipe(udev, d->bEndpointAddress)) >= 12) {
ep = d;
break;
}
}
if (!ep) return -ENODEV;
struct g29_dev *g29;
if ((g29 = kzalloc(sizeof(*g29), GFP_KERNEL)) == NULL) {
return -ENOMEM;
}
struct input_dev *input;
if ((input = input_allocate_device()) == NULL) {
ret = -ENOMEM;
goto err_free_g29;
}
g29->udev = udev;
g29->input = input;
g29->endpoint = usb_endpoint_num(ep);
g29->maxp = usb_endpoint_maxp(ep);
g29->interval = ep->bInterval;
memset(&g29->last, 0, sizeof(g29->last));
g29->current_mode = mode; /* Initialize to module parameter */
timer_setup(&g29->steer_timer, wasd_mode_timer_fn, 0);
timer_setup(&g29->mouse_timer, mouse_mode_timer_fn, 0);
if ((g29->buf = usb_alloc_coherent(udev, g29->maxp, GFP_KERNEL, &g29->buf_dma)) == NULL) {
ret = -ENOMEM;
goto err_free_input;
}
if ((g29->urb = usb_alloc_urb(0, GFP_KERNEL)) == NULL) {
ret = -ENOMEM;
goto err_free_buf;
}
if (udev->manufacturer)
strscpy(g29->name, udev->manufacturer, sizeof(g29->name));
if (udev->product) {
if (udev->manufacturer)
strlcat(g29->name, " ", sizeof(g29->name));
strlcat(g29->name, udev->product, sizeof(g29->name));
}
if (!strlen(g29->name))
snprintf(g29->name, sizeof(g29->name),
"Logitech G29 USB %04x:%04x",
le16_to_cpu(udev->descriptor.idVendor),
le16_to_cpu(udev->descriptor.idProduct));
usb_make_path(udev, g29->phys, sizeof(g29->phys));
strlcat(g29->phys, "/input0", sizeof(g29->phys));
input->name = g29->name;
input->phys = g29->phys;
usb_to_input_id(udev, &input->id);
input->dev.parent = &intf->dev;
__set_bit(EV_KEY, input->evbit);
__set_bit(EV_REL, input->evbit);
/* Media mode keys */
input_set_capability(input, EV_KEY, KEY_VOLUMEUP);
input_set_capability(input, EV_KEY, KEY_VOLUMEDOWN);
input_set_capability(input, EV_KEY, KEY_PLAYPAUSE);
input_set_capability(input, EV_KEY, KEY_NEXTSONG);
input_set_capability(input, EV_KEY, KEY_PREVIOUSSONG);
/* WASD mode keys */
input_set_capability(input, EV_KEY, KEY_W);
input_set_capability(input, EV_KEY, KEY_A);
input_set_capability(input, EV_KEY, KEY_S);
input_set_capability(input, EV_KEY, KEY_D);
/* Mouse mode capabilities */
input_set_capability(input, EV_KEY, BTN_LEFT);
input_set_capability(input, EV_KEY, BTN_RIGHT);
input_set_capability(input, EV_KEY, BTN_MIDDLE);
input_set_capability(input, EV_REL, REL_X);
input_set_capability(input, EV_REL, REL_Y);
input_set_capability(input, EV_REL, REL_WHEEL);
input_set_drvdata(input, g29);
input->open = g29_input_open;
input->close = g29_input_close;
usb_fill_int_urb(g29->urb, udev, usb_rcvintpipe(udev, ep->bEndpointAddress),
g29->buf, g29->maxp,
g29_urb_complete, g29, ep->bInterval);
g29->urb->transfer_dma = g29->buf_dma;
g29->urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
if ((ret = input_register_device(input)) != 0) {
goto err_free_urb;
}
usb_set_intfdata(intf, g29);
dev_info(&intf->dev,
"G29 media driver bound (ep=%02x interval=%u)\n",
ep->bEndpointAddress, ep->bInterval);
return 0;
err_free_urb:
usb_free_urb(g29->urb);
err_free_buf:
usb_free_coherent(udev, g29->maxp, g29->buf, g29->buf_dma);
err_free_input:
input_free_device(input);
err_free_g29:
kfree(g29);
return ret;
}
static void g29_disconnect(struct usb_interface *intf) {
struct g29_dev *g29 = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
if (!g29) return;
usb_kill_urb(g29->urb);
input_unregister_device(g29->input);
usb_free_urb(g29->urb);
usb_free_coherent(interface_to_usbdev(intf), g29->maxp, g29->buf, g29->buf_dma);
kfree(g29);
dev_info(&intf->dev, "G29 driver disconnected\n");
}
static const struct usb_device_id g29_id_table[] = {
{ USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G29) },
{ USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G29_ALT) },
{ }
};
MODULE_DEVICE_TABLE(usb, g29_id_table);
static struct usb_driver g29_driver = {
.name = "g29_usb",
.id_table = g29_id_table,
.probe = g29_probe,
.disconnect = g29_disconnect,
};
module_usb_driver(g29_driver);