Not working

This commit is contained in:
2022-04-12 18:49:06 +02:00
parent 15e3fefcf2
commit 5d129cd6f9
5 changed files with 555 additions and 2 deletions

126
src/Body.java Normal file
View File

@ -0,0 +1,126 @@
import codedraw.CodeDraw;
/**
* This class represents celestial bodies like stars, planets, asteroids, etc...
*/
public class Body {
private final double mass;
private Vector massCenter; // position of the mass center.
private Vector currentMovement;
public Body(double mass, Vector massCenter, Vector currentMovement) {
this.mass = mass;
this.massCenter = massCenter;
this.currentMovement = currentMovement;
}
public Body(double mass, Vector massCenter) {
this(mass, massCenter, new Vector());
}
public Body(Body other) {
this(other.mass, new Vector(other.massCenter), new Vector(other.currentMovement));
}
/**
* Returns the distance between the mass centers of this body and the specified body 'b'.
*/
public double distanceTo(Body b) {
return massCenter.distanceTo(b.massCenter);
}
/**
* Returns a vector representing the gravitational force exerted by 'b' on this body.
* The gravitational Force F is calculated by F = G*(m1*m2)/(r*r), with m1 and m2 being the
* masses of the objects interacting, r being the distance between the centers of the masses
* and G being the gravitational constant.
* Hint: see simulation loop in Simulation.java to find out how this is done.
*/
public Vector gravitationalForce(Body b) {
Vector direction = b.massCenter.minus(massCenter);
double distance = direction.length();
direction.normalize();
double force = Simulation.G * mass * b.mass / (distance * distance);
return direction.times(force);
}
/**
* Moves this body to a new position, according to the specified force vector 'force' exerted
* on it, and updates the current movement accordingly.
* (Movement depends on the mass of this body, its current movement and the exerted force.)
* Hint: see simulation loop in Simulation.java to find out how this is done.
*/
public void move(Vector force) {
// F = m*a -> a = F/m
Vector newPosition = massCenter.plus(force.times(1.0 / mass)).plus(currentMovement);
// new minus old position.
Vector newMovement = newPosition.minus(massCenter);
// update body state
massCenter = newPosition;
currentMovement = newMovement;
}
/**
* Returns the approximate radius of this body.
* (It is assumed that the radius r is related to the mass m of the body by r = m ^ 0.5,
* where m and r measured in solar units.)
*/
public double radius() {
return SpaceDraw.massToRadius(mass);
}
/**
* Return the mass of the Body.
*/
public double mass() {
return mass;
}
public Vector massCenter() {
return massCenter;
}
public boolean collidesWith(Body body) {
return this.distanceTo(body) < this.radius() + body.radius();
}
/**
* Returns a new body that is formed by the collision of this body and 'b'. The impulse
* of the returned body is the sum of the impulses of 'this' and 'b'.
*/
public Body merge(Body body) {
double totalMass = this.mass + body.mass;
return new Body(
totalMass,
this.massCenter.times(this.mass).plus(body.massCenter.times(body.mass)).times(1.0 / totalMass),
this.currentMovement.times(this.mass).plus(body.currentMovement.times(body.mass)).times(1.0 / totalMass)
);
}
/**
* Draws the body to the specified canvas as a filled circle.
* The radius of the circle corresponds to the radius of the body
* (use a conversion of the real scale to the scale of the canvas as
* in 'Simulation.java').
* Hint: call the method 'drawAsFilledCircle' implemented in 'Vector'.
*/
public void draw(CodeDraw cd) {
cd.setColor(SpaceDraw.massToColor(mass));
massCenter.drawAsFilledCircle(cd, SpaceDraw.massToRadius(mass));
}
/**
* Returns a string with the information about this body including
* mass, position (mass center) and current movement. Example:
* "5.972E24 kg, position: [1.48E11,0.0,0.0] m, movement: [0.0,29290.0,0.0] m/s."
*/
@Override
public String toString() {
return String.format(
"%g kg, position: %s m, movement: %s m/s.",
mass, massCenter.toString(), currentMovement.toString()
);
}
}

167
src/Octree.java Normal file
View File

@ -0,0 +1,167 @@
/**
* + -> >= 0
* - -> < 0
* 0 -> x+ y+ z+
* 1 -> x- y+ z+
* 2 -> x+ y- z+
* 3 -> x- y- z+
* 4 -> x+ y+ z-
* 5 -> x- y+ z-
* 6 -> x+ y- z-
* 7 -> x- y- z-
*/
public class Octree {
private OctreeItem root;
private final Vector center;
private final double size;
public Octree(double size) {
this(new Vector(), size);
}
public Octree(Vector center, double size) {
this.center = center;
this.size = size;
}
public void add(Body body) {
if (root == null) {
root = new OctreeLeaf(center, size, body);
} else {
root = root.add(body);
}
}
public void applyForces(Body[] bodies, double t) {
if (root == null) return;
root.preCalc();
Vector[] forces = new Vector[bodies.length];
for (int i = 0; i < bodies.length; i++) {
forces[i] = root.getForcesOnBody(bodies[i], t);
}
for (int i = 0; i < bodies.length; i++) {
bodies[i].move(forces[i]);
}
}
}
abstract class OctreeItem {
protected Vector center;
protected double size;
protected Body pseudoBody;
protected OctreeItem(Vector center, double size) {
this.center = center;
this.size = size;
}
abstract protected OctreeNode add(Body body);
abstract protected void preCalc();
abstract protected Vector getForcesOnBody(Body body, double t);
}
class OctreeNode extends OctreeItem {
private final OctreeItem[] children = new OctreeItem[8];;
protected OctreeNode(Vector center, double size) {
super(center, size);
}
@Override
protected OctreeNode add(Body body) {
int num = getOctantNum(body.massCenter());
if (num < 0) return this;
OctreeItem oct = children[num];
if (oct == null) {
children[num] = new OctreeLeaf(getOctantCenter(num), size / 2.0, body);
} else {
children[num] = oct.add(body);
}
return this;
}
@Override
protected void preCalc() {
double mass = 0;
for (OctreeItem oct : children) {
if (oct == null) continue;
oct.preCalc();
mass += oct.pseudoBody.mass();
}
Vector massCenter = new Vector();
for (OctreeItem oct : children) {
if (oct == null) continue;
massCenter = massCenter.plus(oct.pseudoBody.massCenter().times(oct.pseudoBody.mass() / mass));
}
this.pseudoBody = new Body(mass, massCenter);
}
@Override
protected Vector getForcesOnBody(Body body, double t) {
double r = pseudoBody.massCenter().distanceTo(body.massCenter());
if (r == 0) {
return new Vector();
} else if (size / r < t) {
return body.gravitationalForce(pseudoBody);
}
Vector force = new Vector();
for (OctreeItem child : children) {
if (child == null) continue;
force = force.plus(child.getForcesOnBody(body, t));
}
return force;
}
private int getOctantNum(Vector bodyPos) {
Vector pos = bodyPos.minus(this.center);
if (!isInOctant(bodyPos)) return -1;
return ((pos.getX() < 0) ? 1 : 0) | ((pos.getY() < 0) ? 2 : 0) | ((pos.getZ() < 0) ? 4 : 0);
}
private boolean isInOctant(Vector pos) {
Vector p1 = center.plus(new Vector(size / 2));
Vector p2 = center.minus(new Vector(size / 2));
return pos.getX() <= p1.getX() && pos.getY() <= p1.getY() && pos.getZ() <= p1.getZ() &&
pos.getX() >= p2.getX() && pos.getY() >= p2.getY() && pos.getZ() >= p2.getZ();
}
private Vector getOctantCenter(int octNum) {
return this.center.plus(new Vector(
((octNum & 1) != 0) ? -0.5 : 0.5,
((octNum & 2) != 0) ? -0.5 : 0.5,
((octNum & 4) != 0) ? -0.5 : 0.5)
.times(this.size));
}
}
class OctreeLeaf extends OctreeItem {
private final Body body;
public OctreeLeaf(Vector center, double size, Body body) {
super(center, size);
this.body = body;
}
@Override
protected OctreeNode add(Body body) {
OctreeNode replace = new OctreeNode(this.center, this.size);
replace.add(this.body);
replace.add(body);
return replace;
}
@Override
protected void preCalc() {
System.out.println(this.body);
this.pseudoBody = new Body(this.body);
}
@Override
protected Vector getForcesOnBody(Body body, double t) {
return body.gravitationalForce(pseudoBody);
}
}

View File

@ -1,8 +1,80 @@
import codedraw.CodeDraw;
import java.awt.*;
import java.util.Random;
public class Simulation { public class Simulation {
// gravitational constant
public static final double G = 6.6743e-11;
// one astronomical unit (AU) is the average distance of earth to the sun.
public static final double AU = 150e9; // meters
// one light year
public static final double LY = 9.461e15; // meters
// some further constants needed in the simulation
public static final double SUN_MASS = 1.989e30; // kilograms
public static final double SUN_RADIUS = 696340e3; // meters
public static final double EARTH_MASS = 5.972e24; // kilograms
public static final double EARTH_RADIUS = 6371e3; // meters
// set some system parameters
public static final double SECTION_SIZE = 2 * AU; // the size of the square region in space
public static final int NUMBER_OF_BODIES = 22;
public static final double OVERALL_SYSTEM_MASS = 20 * SUN_MASS; // kilograms
public static void main(String[] args) { public static void main(String[] args) {
//TODO: please use this class to run your simulation CodeDraw cd = new CodeDraw();
Body[] bodies = new Body[NUMBER_OF_BODIES];
Random random = new Random(2022);
for (int i = 0; i < Simulation.NUMBER_OF_BODIES; i++) {
bodies[i] = new Body(
Math.abs(random.nextGaussian()) * Simulation.OVERALL_SYSTEM_MASS / Simulation.NUMBER_OF_BODIES,
new Vector(
0.2 * random.nextGaussian() * Simulation.AU,
0.2 * random.nextGaussian() * Simulation.AU,
0.2 * random.nextGaussian() * Simulation.AU
),
new Vector(
0 + random.nextGaussian() * 5e3,
0 + random.nextGaussian() * 5e3,
0 + random.nextGaussian() * 5e3
)
);
}
long seconds = 0;
while (true) {
seconds++;
/*
BodyLinkedList mergedBodies = new BodyLinkedList();
for (Body b1 : bodies) {
BodyLinkedList colliding = bodies.removeCollidingWith(b1);
for (Body b2 : colliding) {
b1 = b1.merge(b2);
}
mergedBodies.addLast(b1);
}
bodies = mergedBodies;
*/
Octree octree = new Octree(new Vector(AU), SECTION_SIZE);
for (Body body : bodies) {
octree.add(body);
}
octree.applyForces(bodies, 1);
if ((seconds % 3600) == 0) {
cd.clear(Color.BLACK);
for (Body body : bodies) {
body.draw(cd);
}
cd.show();
}
}
} }
} }

63
src/SpaceDraw.java Normal file
View File

@ -0,0 +1,63 @@
import java.awt.*;
public class SpaceDraw {
/**
* Returns the approximate radius of a celestial body with the specified mass.
* (It is assumed that the radius r is related to the mass m of the body by r = m ^ 0.5,
* where m and r measured in solar units.)
*/
public static double massToRadius(double mass) {
return Simulation.SUN_RADIUS * (Math.pow(mass / Simulation.SUN_MASS, 0.5));
}
/**
* Returns the approximate color of a celestial body with the specified mass. The color of
* the body corresponds to the temperature of the body, assuming the relation of mass and
* temperature of a main sequence star.
*/
public static Color massToColor(double mass) {
Color color;
if (mass < Simulation.SUN_MASS / 10) {
// not a star-like body below this mass
color = Color.LIGHT_GRAY;
} else {
// assume a main sequence star
color = SpaceDraw.kelvinToColor((int) (5500 * mass / Simulation.SUN_MASS));
}
return color;
}
/**
* Returns the approximate color of temperature 'kelvin'.
*/
private static Color kelvinToColor(int kelvin) {
double k = kelvin / 100D;
double red = k <= 66 ? 255 : 329.698727446 * Math.pow(k - 60, -0.1332047592);
double green = k <= 66 ? 99.4708025861 * Math.log(k) - 161.1195681661 : 288.1221695283 * Math.pow(k - 60, -0.0755148492);
double blue = k >= 66 ? 255 : (k <= 19 ? 0 : 138.5177312231 * Math.log(k - 10) - 305.0447927307);
return new Color(
limitAndDarken(red, kelvin),
limitAndDarken(green, kelvin),
limitAndDarken(blue, kelvin)
);
}
/**
* A transformation used in the method 'kelvinToColor'.
*/
private static int limitAndDarken(double color, int kelvin) {
int kelvinNorm = kelvin - 373;
if (color < 0 || kelvinNorm < 0) {
return 0;
} else if (color > 255) {
return 255;
} else if (kelvinNorm < 500) {
return (int) ((color / 256D) * (kelvinNorm / 500D) * 256);
} else {
return (int) color;
}
}
}

125
src/Vector.java Normal file
View File

@ -0,0 +1,125 @@
import codedraw.CodeDraw;
/**
* This class represents vectors in a 3D vector space.
*/
public class Vector {
private double x;
private double y;
private double z;
public Vector() {
this(0);
}
public Vector(double v) {
this(v, v, v);
}
public Vector(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
public Vector(Vector other) {
this(other.x, other.y, other.z);
}
public double getX() {
return this.x;
}
public double getY() {
return this.y;
}
public double getZ() {
return this.z;
}
/**
* Returns the sum of this vector and vector 'v'.
*/
public Vector plus(Vector v) {
return new Vector(x + v.x, y + v.y, z + v.z);
}
/**
* Returns the product of this vector and 'd'.
*/
public Vector times(double d) {
return new Vector(x * d, y * d, z * d);
}
/**
* Returns the sum of this vector and -1*v.
*/
public Vector minus(Vector v) {
return new Vector(x - v.x, y - v.y, z - v.z);
}
/**
* Returns the Euclidean distance of this vector
* to the specified vector 'v'.
*/
public double distanceTo(Vector v) {
double dX = x - v.x;
double dY = y - v.y;
double dZ = z - v.z;
return Math.sqrt(dX * dX + dY * dY + dZ * dZ);
}
/**
* Returns the length (norm) of this vector.
*/
public double length() {
return distanceTo(new Vector());
}
/**
* Normalizes this vector: changes the length of this vector such that it becomes 1.
* The direction and orientation of the vector is not affected.
*/
public void normalize() {
double length = length();
x /= length;
y /= length;
z /= length;
}
public double getScreenX(CodeDraw cd) {
return cd.getWidth() * (this.x + Simulation.SECTION_SIZE / 2) / Simulation.SECTION_SIZE;
}
public double getScreenY(CodeDraw cd) {
return cd.getWidth() * (this.y + Simulation.SECTION_SIZE / 2) / Simulation.SECTION_SIZE;
}
/**
* Draws a filled circle with a specified radius centered at the (x,y) coordinates of this vector
* in the canvas associated with 'cd'. The z-coordinate is not used.
*/
public void drawAsFilledCircle(CodeDraw cd, double radius) {
radius = cd.getWidth() * radius / Simulation.SECTION_SIZE;
cd.fillCircle(getScreenX(cd), getScreenY(cd), Math.max(radius, 1.5));
}
/**
* Returns the coordinates of this vector in brackets as a string
* in the form "[x,y,z]", e.g., "[1.48E11,0.0,0.0]".
*/
@Override
public String toString() {
return String.format("[%g,%g,%g]", x, y, z);
}
@Override
public boolean equals(Object other) {
if (other.getClass() != Vector.class) {
return false;
}
Vector v = (Vector) other;
return this.x == v.x && this.y == v.y && this.z == v.z;
}
}