
Abfangen und Manipulieren von
System-/Funktionsaufrufen in

Linux-Systemen

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Software & Information Engineering

eingereicht von

Lorenz Stechauner
Matrikelnummer 12119052

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner
Mitwirkung: Univ.Ass. Dipl.-Ing. Florian Mihola, BSc

Wien, 1. August 2025
Lorenz Stechauner Peter Puschner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Intercepting and Manipulating
System/Function Calls in

Linux Systems

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software & Information Engineering

by

Lorenz Stechauner
Registration Number 12119052

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Peter Puschner
Assistance: Univ.Ass. Dipl.-Ing. Florian Mihola, BSc

Vienna, August 1, 2025
Lorenz Stechauner Peter Puschner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Lorenz Stechauner

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT-Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 1. August 2025
Lorenz Stechauner

v

Kurzfassung

Lorem Ipsum.

vii

Abstract

Lorem Ipsum.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation and Goal . 1
1.2 Definitions . 1
1.3 Related Work . 1

2 Intercepting Function Calls 3
2.1 Identified Methods for Intercepting Function and System Calls 3
2.2 Fundamental Project Structure . 8
2.3 Retrieving Function Argument Values 8
2.4 Retrieving Function Return Values . 11
2.5 Determining Function Call Location 12
2.6 intercept.so Library . 14
2.7 intercept Command . 14
2.8 Example . 16
2.9 Automated Testing on Intercepted Function Calls 16

3 Manipulating Function Calls 19
3.1 Defining a Protocol . 19
3.2 Automated Testing using Function Call Manipulation 21

4 Conclusion 25

Overview of Gen. AI Tools Used 27

List of Figures 29

List of Tables 31

List of Listings 33

xi

Bibliography 35

CHAPTER 1
Introduction

Lorem Ipsum.

1.1 Motivation and Goal
Lorem Ipsum.

1.2 Definitions
Lorem Ipsum.

1.2.1 System Calls
Lorem Ipsum.

1.2.2 Function Calls
Lorem Ipsum.

1.3 Related Work
See also Section 2.1.

Lorem Ipsum.

https://dl.acm.org/doi/10.1145/3728874

What other solutions are available? What are the differences? What are the characteris-
tics?

1

1. Introduction

1.3.1 GDB Checker
Lorem Ipsum.

1.3.2 zpoline
Lorem Ipsum. [16]

1.3.3 DataHook
Lorem Ipsum. [15]

2

CHAPTER 2
Intercepting Function Calls

In this chapter all steps on how to intercept function calls in this work are discussed.
An example of what the resulting interception looks like may be found in Section 2.8.
Furthermore, an overview on how to test given programs is presented in Section 2.9. This
chapter does not discuss how these function calls may be manipulated in any way. For
that see Chapter 3.

2.1 Identified Methods for Intercepting Function and
System Calls

First, one has to answer the question on how exactly to intercept function or system
calls. At the beginning of this work it was not yet determined if the interception of
function calls, system calls, or both should be used to achieve the overarching goal (see
Section 1.1). This first section tries to list all possible methods on how to intercept
function or system calls but does not claim completeness. The order of the following
subsections is roughly based on the thought process on finding the most appropriate
method suitable for this work.

2.1.1 ptrace System Call
The first thing that pops up when researching on how to intercept system calls in Linux
is the ptrace (“process trace”) system call. This system call allows one process to
observe and control the execution of another process (including memory and registers).
The control is handed from the traced process to the tracing process each time any signal
is delivered. [9]

To make use of this system call, a corresponding command already exists. See Subsec-
tion 2.1.2.

3

2. Intercepting Function Calls

2.1.2 strace Command
The strace (“system call/signal trace”) command may be used to run a specified
command and to thereby intercept and record the system calls which are made. Each
system call is recorded as a line and either written to the standard error output or a
specified file. [11]

Listings 2.1 and 2.2 give a simple example of what this output looks like. It is clearly
visible that only (“pure”) system calls are recorded, and calls to library functions (like
malloc or free) do not appear. Also note that arguments to the calls are displayed in
a “pretty” way. For example, string arguments would be simple pointers, but strace
displays them as C-like strings.

1 #include <stdlib.h>
2 #include <stdio.h>
3 #include <string.h>
4

5 int main(const int argc, char *const argv[]) {
6 char *str = malloc(10);
7 strcpy(str, "Abc123");
8 printf("Hello World!\nString: %s\n", str);
9 free(str);

10 }

Listing 2.1: Contents of main.c.

execve("./main", ["./main"], 0x7ffd63b32bb0 /* 71 vars */) = 0
[-- 32 lines omitted --]
write(1, "Hello World!\n", 13) = 13
write(1, "String: Abc123\n", 15) = 15
exit_group(0) = ?
+++ exited with 0 +++

Listing 2.2: Output of strace ./main.

This approach works great for debugging and other use-cases, but only intercepting
system calls does not statisfy the requirements for this work.

2.1.3 ltrace Command
The ltrace (“library call trace”) command may be used to trace dynamic library calls
instead of system calls. It works similarly to strace (see 2.1.2). [6]

Listings 2.1 and 2.3 illustrate what the output of ltrace looks like. In contrast to
the output of strace now only “real” calls to library functions are included in the
output. Therefore, a lot less “noise” is generated (see omitted lines in Listing 2.2). Again,

4

2.1. Identified Methods for Intercepting Function and System Calls

the function arguments are displayed in a “pretty” way. This command uses so-called
prototype functions [7] to format function arguments.

malloc(10) = 0x55624164b2a0
printf("Hello World!\nString: %s\n", "Abc123") = 28
free(0x55624164b2a0) = <void>
+++ exited (status 0) +++

Listing 2.3: Output of ltrace ./main.

This method fits the requirements for this work a lot better than strace (see Subsec-
tion 2.1.2), but it is not very flexible and offers no means to modify the intercepted
function calls.

2.1.4 Kernel Module
Another possibility to intercept system calls is to intercept them directly in the kernel via
a kernel module. However, this work did not explore this approach further due to time
constraints and other, better-fitting alternatives. See [14, Section 7.2] for more details on
how to intercept system calls using kernel modules.

2.1.5 Wrapper Functions in gcc
A different approach to intercepting function calls is to tell the compiler directly which
functions should be intercepted. The compiler, and the linker respectively, then directly
link calls to the specified functions to wrapper functions. (See Subsection 2.1.6 for more
details.)

The default linker ld includes such a feature. See the ld(1) Linux manual page [4, Section
OPTIONS]:

--wrap=symbol Use a wrapper function for symbol. Any undefined refer-
ence to symbol will be resolved to __wrap_symbol. Any undefined
reference to __real_symbol will be resolved to symbol.
This can be used to provide a wrapper for a system function. The
wrapper function should be called __wrap_symbol. If it wishes to call
the system function, it should call __real_symbol. [. . .]

The gcc compiler also supports this by allowing passing options to the linker. See the
gcc(1) Linux manual page [3, Section OPTIONS]:

-Wl,option Pass option as an option to the linker. If option con-
tains commas, it is split into multiple options at the commas. You

5

2. Intercepting Function Calls

can use this syntax to pass an argument to the option. For exam-
ple, -Wl,-Map,output.map passes -Map output.map to the linker.
When using the GNU linker, you can also get the same effect with
-Wl,-Map=output.map. [. . .]

This means, by specifying -Wl,--wrap=symbol when compiling using gcc, all calls
from the currently compiled program to symbol are redirected to __wrap_symbol. To
call the real function inside the wrapper, __real_symbol may be used. Listings 2.4
and 2.5 try to illustrate this by overriding the malloc function of the C standard library.

1 #include <stddef.h>
2

3 extern void *__real_malloc(size_t size);
4

5 void *__wrap_malloc(size_t size) {
6 // before call to malloc
7 void *ret = __real_malloc(size);
8 // after call to malloc
9 return ret;

10 }

Listing 2.4: Contents of wrap.c.

gcc -o main_wrapped main.c wrap.c -Wl,--wrap=malloc
./main_wrapped

Listing 2.5: Compile main.c and wrap.c and run the resulting program.

This approach allows wrapping any function in a relatively clean way. But it is not
possible to override functions in any given binary program. It is required to re-compile
(or to re-link) a given program to use this feature of ld. Therefore, the source code (or
the corresponding *.out files) needs to be available. Note, only calls from the targeted
source code will be redirected, calls from other libraries won’t.

Theoretically, it should be possible to re-link a given binary without having access to its
source code. But due to other more straight-forward methods (see Subsection 2.1.6), this
has not been further investigated.

2.1.6 Preloading using LD_PRELOAD

To execute binary files on Linux systems, a dynamic linker is needed at runtime. (Unless
the binaries were statically linked at compile-time.) Usually, ld.so and ld-linux.so
are used as dynamic linkers. They find and load the shared objects (shared libraries)
needed by a program, prepare the program and finally run it. [5]

6

2.1. Identified Methods for Intercepting Function and System Calls

As the overwhelming majority of programs are dynamically linked, most function calls to
other libraries (like to the C standard library) reference a shared object, which has to be
loaded by the linker at runtime. Therefore, it would be possible to “hijack” (or intercept)
these function calls when the linker would allow loading other functions instead of the
proper ones.

Luckily, ld.so allows this so-called “preloading”. See the ld.so(8) Linux manual page [5,
Section ENVIRONMENT]:

LD_PRELOAD A list of additional, user-specified, ELF shared objects to be
loaded before all others. This feature can be used to selectively override
functions in other shared objects. [. . .]

This means, by setting the environment variable LD_PRELOAD, it is possible to override
specific functions. Listings 2.6 and 2.7 try to illustrate this by overriding the malloc
function of the C standard library.

1 #include <stdlib.h>
2 #include <dlfcn.h>
3 #include <errno.h>
4

5 void *malloc(size_t size) {
6 // before call to malloc
7 void *(*_malloc)(size_t);
8 if ((_malloc = dlsym(RTLD_NEXT, "malloc")) == NULL) {
9 errno = ENOSYS;

10 return NULL;
11 }
12 void *ret = _malloc(size);
13 // after call to malloc
14 return ret;
15 }

Listing 2.6: Contents of preload.c.

./main is already compiled and ready
gcc -shared -fPIC -o preload.so preload.c
LD_PRELOAD="$(pwd)/preload.so" ./main

Listing 2.7: Compile preload.c and run a program with LD_PRELOAD.

The function dlsym is used to retrieve the original address of the malloc function.
RTLD_NEXT indicates to find the next occurrence of malloc in the search order after
the current object. [2]

7

2. Intercepting Function Calls

By using this method, it is possible to override, and therefore wrap, any function as long
as the targeted binary was not statically linked. Although, one has to be aware that not
only function calls inside the targeted binary, but also calls inside other libraries (e.g., to
malloc) are redirected to the overriding function.

2.1.7 Conclusion
During the research on different approaches to intercepting system and function calls,
it has been found that the most reliable way to achieve the goals of this work (see
Section 1.1) is to intercept function calls instead of system calls. This is because (as long
as the programs to test are dynamically linked), intercepting function calls allows one to
intercept many more calls and in a more flexible way. Therefore, from now on this work
only considers function calls and no system calls directly.

In this work preloading (see Subsection 2.1.6) was chosen to be used because it is simple
to use (“clean” source code, easy to compile and run programs with it) and offers the
means to arbitrarily execute code when the intercepted function call is redirected. The
following sections concern the next steps in what else is needed to create a powerful
“interceptor”.

2.2 Fundamental Project Structure
After deciding to use the preloading method to intercept function calls, a more detailed
plan is needed to continue developing. It was decided to have one single intercept.so
file as a resulting artifact which then may be loaded via the LD_PRELOAD environment
variable. The easiest and most straightforward way to structure the source code was to
put all code in one single C file. Listing 2.8 gives an overview over the grounding code
structure. For each function that should be intercepted, this function simply has to be
declared and defined the same way malloc was.

2.3 Retrieving Function Argument Values
Now that the first steps have been done, one needs to think about what exactly to record
when intercepting. A simple notification that a given function was called would be too
less. Within the following subsections it is tried to get as much information as possible
from each function call.

As already mentioned, ltrace uses prototype functions to format its function arguments.
This allows ltrace to “dynamically” display function arguments for any new or unknown
functions without the need for recompilation. [7]

However, due to implementation complexity reasons and the need for “complex” return
types for string/buffer and structure values (see Section 2.4) a statically compiled approach
has been used for this work. This means that each function formats its arguments and
return values itself without any configuration option.

8

2.3. Retrieving Function Argument Values

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <errno.h>
4 #include <string.h>
5 #include <dlfcn.h>
6

7 static void *(*__real_malloc)(size_t);
8

9 static int mode = 0;
10

11 static void fin(void) {
12 if (mode > 0) fprintf(stderr, "intercept: stopped\n");
13 mode = 0;
14 }
15

16 static void init(void) {
17 if (mode) return;
18 mode = -1;
19 if (((__real_malloc) = dlsym(RTLD_NEXT, "malloc")) == NULL) {
20 fprintf(stderr, "intercept: unable to load symbol '%s': %s",
21 "malloc", strerror(errno));
22 return;
23 }
24 atexit(fin);
25 fprintf(stderr, "intercept: intercepting function calls\n");
26 mode = 1;
27 }
28

29 void *malloc(size_t size) {
30 init();
31 // before call to malloc
32 void *ret = __real_malloc(size);
33 // after call to malloc
34 return ret;
35 }

Listing 2.8: Contents of intercept-preload.c.

9

2. Intercepting Function Calls

The reason for retrieving as much information as possible from each function call is that
at a later point in time it is possible to completely reconstruct the exact function calls
and their sequence. This allows analysis on these records to be performed independently
of the corresponding execution of the program. It should always be possible for any parser
to fully parse the recorded calls without any specific knowledge of specific functions, their
argument types, or return value type.

2.3.1 Numbers
The most simple types of argument are plain numbers, like integers (int, long, . . .)
or floating point numbers (float, double). (In fact, all arguments are represented as
numbers or integers. See the following subsections for examples.) Plain numbers may
be formatted simply as what they are, in base 10 notation, or with a prefix like 0x for
hexadecimal or 0 for octal representation.

Example: malloc(123) (or malloc(0x7B)).

2.3.2 Unspecific Pointers
Pointers with no further information known about (like void *) are essentially integers.
Therefore, they may be treated as such.

Example: free(0x55624164b2a0).

2.3.3 Strings and Buffers
Strings in C are simple pointers to a place in memory which is null-terminated. This means
that the strings end with the first occurrence of the null-byte (0x00). To distinguish
unspecific pointers from pointers to strings, it was chosen to use a colon (:) after the
pointer numerical value. The colon is followed by the contents of the string with beginning
and ending quoted ("). Special values inside the string are escaped with a backslash.

Example: sem_unlink(0x1234:"/test-semaphore").

Another type of “string” in C is a buffer with a known length. When buffers are used,
usually another argument is passed to the function which indicates the length of the
buffer. This fact may be used to print out the contents of the buffer in the same way as
normal C strings.

Example: write(3, 0x1234:"Test\x00ABC", 8).

2.3.4 Flags
Some functions have one of their arguments dedicated to flags which may be combined
by bitwise XOR. These arguments are also of type integer. To distinguish flag arguments
from others, a pipe symbol (|) is used after the colon and between the flags.

Example: open(0x1234:"test.txt", 0102:|O_CREAT|O_RDWR|, 0644).

10

2.4. Retrieving Function Return Values

2.3.5 Constants
For some functions constants are used. These constants are typically used C macros in
the source code. This makes the source code more readable (and portable). Constants
are represented as an integer again followed by a colon, this time without any special
characters to disdinguish them from other types.

Example: socket(2:AF_INET, 1:SOCK_STREAM, 6).

2.3.6 Pointers to Arrays
Sometimes arrays are used as arguments. Arrays in C work similar to strings, they are
either null-terminated (by an element being of value 0), or their length is explicitly given.
So to represent them, two brackets are used ([]) and a comma (,) to separate the
respective elements. Each element may be represented as an “argument” on its own (as
illustrated by the example).

Example:
getopt(2, 0x7f0b8:[0x7feb3:"./main", 0x7fee6:"arg"], 0x123:"v").

2.3.7 Pointers to Structures
In rare cases structures (struct) are used as argument types. Two curly brackets ({})
are used to indicate structures. Then the field names are displayed plainly, followed
by a colon and then the value of that field. Commas are used to separate the fields
respectively.

Example: connect(2, 0x123:{sa_family: 2:AF_INET, sin_addr: "1.1.1.1", sin_port: 80}, 16).

2.4 Retrieving Function Return Values
It might seem that retrieving return values of functions is as straightforward as retrieving
their arguments, but this is not entirely the case. Most libc functions return -1 on error
and set errno to indicate the exact type of error. Other functions (like read, pipe,
or sem_getvalue) even store their output in a pointer which was given to them as an
argument. The following examples illustrate how this challenge was solved.

Example (malloc):
return 0x1234; errno 0,
return -1; errno ENOMEM.

Example (pipe):
return 0; errno 0; fildes=[3,4],
return -1; errno ENFILE.

Example (read):
return 12; errno 0; buf=0x7fff70:"Hello World!",
return -1; errno EINTR.

11

2. Intercepting Function Calls

2.5 Determining Function Call Location
Besides from argument values and return values, it would be interesting to know from
where inside the intercepted program the function call came from. At first this seems
quite impossible. But a function always knows at least the return address, the address to
set then instruction pointer to when the function finishes. With this information it may
be estimated where the call to the current function came from.

2.5.1 Return Address and Relative Position
As already mentioned, the return address of a function is vital for estimating where the
call came from. Luckily, GCC provides the means to get the return address of the current
function. See in the manual of GCC [12, Section 7.6]:

void *__builtin_return_address(unsigned int level)

This function returns the return address of the current function, or of
one of its callers. The level argument is number of frames to scan up the
call stack. A value of 0 yields the return address of the current function,
a value of 1 yields the return address of the caller of the current function,
and so forth. [. . .]

The return address on its own is of limited use. Because, among other things, of Address
Space Layout Randomization (ASLR) in almost all modern programs. ASLR is a security
feature that randomly places shared objects (libraries) in the virtual memory of a program
on each execution. In contrast to always positioning the same object at the same address
each time, this makes it harder to exploit internal memory structures.

Fortunately, the dynamic linking library includes a function to translate a given virtual
memory address to symbolic information without having to worry about ASLR and other
obstacles. See the dladdr(3) Linux manual page [1]:

int dladdr(const void *addr, Dl_info *info)

The function dladdr() determines whether the address specified in addr
is located in one of the shared objects loaded by the calling application.
If it is, then dladdr() returns information about the shared object and
symbol that overlaps addr. This information is returned in a Dl_info
structure:
typedef struct {
const char *dli_fname; /* Pathname of shared object

that contains address */
void *dli_fbase; /* Base address at which

shared object is loaded */
const char *dli_sname; /* Name of symbol whose

12

2.5. Determining Function Call Location

definition overlaps addr */
void *dli_saddr; /* Exact address of symbol

named in dli_sname */
} Dl_info;

[. . .]

Using information from Dl_info, it is possible to exactly determine the (shared) object
from where the call came from (dli_fname). Furthermore, it is possible to calculate
the relative position inside this (shared) object using dli_fbase and the return address
itself. Keep in mind that the return address may only be used as an estimation for the
origin of the call. Especially heavily optimized programs might use the same return
address for functions in different code paths. Optionally, a name of a “symbol” (function)
may be retrieved from where the function call came from.

2.5.2 Source File and Line Number

DWARF is a file format used for storing debugging information (like source file, line
number) inside compiled binaries. This allows various debuggers and other analysis
programs to better give feedback to the user. [13]

This also helps to find the origin of a given function call. When a program is compiled
with GCC using the flags -g or -gdwarf GCC includes the DWARF debug section
in the resulting binary. Using the readelf tool, it is possible to make use of this debug
section. See the readelf(1) Linux manual page [10, Section OPTIONS]:

--debug-dump Displays the contents of the DWARF debug sections in the
file, if any are present. [. . .] The letters and words refer to the following
information:

[. . .]
=rawline Displays the contents of the .debug_line section in a raw

format.
=decodedline Displays the interpreted contents of the .debug_line

section.
[. . .]

Using the resulting output, which sets relative address and source file and line number in
relation, it is possible to retrieve both values from any given relative address inside the
binary. If this information is present, it is printed within the meta-information of the
function call (see Section 2.8).

13

2. Intercepting Function Calls

2.6 intercept.so Library
The time has come for putting it all together. As mentioned in Section 2.2, almost
the whole project exists in one source file, intercept.c. This file is compiled to
intercept.so, which may be preloaded using LD_PRELOAD and controlled with other
environment variables. These other environment variables are described in the following:

INTERCEPT This variable has to be set to enable function call interception. The value
decides where to output/print/write/send the recorded function calls. Values may
be stdout, stderr, file:<path>, unix:<path>.

INTERCEPT_VERBOSE This variable indicates whether string and structure types should
be printed fully or empty. Possible values are 0 and 1 (default).

INTERCEPT_FUNCTIONS This variable is used to specify which function calls should be
intercepted. It is a list separated by commas, colons, or semicolons. Wildcards (*)
at the end of function names are possible. A prefix of - indicates that the following
function should not be intercepted. Example: *,-sem_ intercepts all functions
except those which start with sem_. By default, all (implemented) functions are
intercepted.

INTERCEPT_LIBRARIES This variable is used to specify which libraries’ function
calls should be intercepted. It is a list separated by commas, colons, or semi-
colons. Wildcards (*) at the end of library paths are possible. A prefix of -
indicates that the following library path should not be intercepted. Example:
,-/lib,-/usr/lib* intercepts only function calls originating from binaries
outside /lib* or /usr/lib* which in most cases is the executed program itself.
By default, function calls from everywhere are intercepted.

The shared object currently supports intercepting the following functions: malloc,
calloc, realloc, reallocarray, free, getopt, exit, read, pread, write,
pwrite, close, sigaction, sem_init, sem_open, sem_post, sem_wait, sem_trywait,
sem_timedwait, sem_getvalue, sem_close, sem_unlink, sem_destroy, shm_open,
shm_unlink, mmap, munmap, ftruncate, fork, wait, waitpid, execl, execlp,
execle, execv, execvp, execvpe, execve, fexecve, pipe, dup, dup2, dup3,
socket, bind, listen, accept, connect, getaddrinfo, freeaddrinfo, send,
sendto, sendmsg, recv, recvfrom, recvmsg, getline, getdelim.

2.7 intercept Command
To make the usage of the aforementioned shared object more easy, a simple python script
has been put together. This script may be used as a command line tool. See Listing 2.9.

The synopsis of the command is as follows:

14

2.7. intercept Command

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3

4 import argparse
5 import subprocess
6 import os
7 import sys
8

9

10 def main() -> None:
11 parser = argparse.ArgumentParser()
12 parser.add_argument('-F', '--functions')
13 parser.add_argument('-s', '--sparse', action='store_true')
14 libs = parser.add_mutually_exclusive_group()
15 libs.add_argument('-o', '--only-own', action='store_true')
16 libs.add_argument('-L', '--libraries')
17 mode = parser.add_mutually_exclusive_group()
18 mode.add_argument('-l', '--log')
19 mode.add_argument('-i', '--intercept')
20 args, extra = parser.parse_known_args()
21 if len(extra) > 0 and extra[0] == '--':
22 extra.pop(0)
23 if len(extra) == 0:
24 parser.error("command expected after arguments or '--'")
25

26 if args.intercept:
27 intercept = args.intercept
28 elif args.log:
29 intercept = 'file:' + args.log
30 else:
31 intercept = 'stderr'
32 subprocess.run(extra, stdin=sys.stdin, env={
33 'LD_PRELOAD': os.getcwd() + '/intercept.so',
34 'INTERCEPT': intercept,
35 'INTERCEPT_VERBOSE': '0' if args.sparse else '1',
36 'INTERCEPT_FUNCTIONS': args.functions or '*',
37 'INTERCEPT_LIBRARIES': '*,-/lib*,-/usr/lib*' if
38 args.only_own else args.libraries or '*',
39 })
40

41

42 if __name__ == '__main__':
43 main()

Listing 2.9: Contents of intercept.

15

2. Intercepting Function Calls

intercept [-h] [-F FUNCTIONS] [-s] [-o | -L LIBRARIES] \
[-l LOG | -i INTERCEPT] [--] COMMAND [ARGS...]

-F, --functions A list of functions to intercept. See Section 2.6 for more details.
Default value is *.

-s, --sparse Indicates that strings and structures should be printed empty to save
bandwidth.

-o, --only-own A shorthand for -L *,-/lib*,-/usr/lib*. This has the effect
that only function calls from the executed binary itself are recorded.

-L, --libraries A list of library paths to intercept function calls from. See Section 2.6
for more details. Default value is * (except when -o is present).

-l, --log Used to specify in which file the recorded function calls should be logged.
Shorthand for -i file:<arg>.

-i, --intercept Decides where to output/print/write/send the recorded function
calls. Values may be stdout, stderr, file:<path>, unix:<path>. See
Section 2.6 for more details.

2.8 Example
To make it easier for the reader, Listing 2.10 provides some recorded function calls. Most
lines had to be broken up into multiple lines for better readability. The recorded calls
stem from a program written by myself as a solution for an assignment in the Operating
Systems course at university. It is a simple HTTP client. The program was invoked using
./intercept -o -- ./client http://www.complang.tuwien.ac.at/.

The first number on each line indicates unix time with nanosecond precision. The second
and third numbers correspond to the process ID and thread ID respectively. Each line
contains either a recorded call to a function or a recorded return of a function. After the
arguments of each function call a colon (:) indicates the beginning of meta-information.
This information always includes the return address to where the function jumps when
completed. If available, the interpretation of the return address is also provided. This
includes the offset relative to the calling binary and a source file and line number
combination if the binary was compiled using gcc -g or gcc -gdwarf.

2.9 Automated Testing on Intercepted Function Calls
The recorded function calls of a program run now may be used to perform checks and
tests on them. It is trivially possible to check which functions were called and in what
order. Furthermore, it is possible to check various pre- and post-conditions for each

16

2.9. Automated Testing on Intercepted Function Calls

1747639484.855979238 17036 17036 \
getopt(2, 0x7ffdff7b20b8:[0x7ffdff7b3eb3:"/home/lorenz/client", 0x7ffdff7b3ee6:\
"http://www.complang.tuwien.ac.at/"], 0x61520b0190f2:"hp:o:d:"): 0x61520b017ac5 \
(/home/lorenz/client+0x1ac5, client.c:186)

1747639484.856009998 17036 17036 \
return -1

1747639484.859018930 17036 17036 \
getaddrinfo(0x7ffdff7b0e70:"www.complang.tuwien.ac.at", 0x61520b019052:"http", 0x7ffdff7b0c30:\
[{ai_flags: 0x0:|, ai_family: 0:AF_UNSPEC, ai_socktype: 1:SOCK_STREAM, ai_protocol: 0, \
ai_addrlen: 0, ai_addr: (nil):{}, ai_canonname: (nil):"", ai_next: (nil)}], 0x7ffdff7b0c10): \
0x61520b01747b (/home/lorenz/client+0x147b, client.c:74)

1747639484.870971294 17036 17036 \
return 0:SUCCESS; errno 0; res=0x615238e79e00:[{ai_flags: 0x0:|, ai_family: 2:AF_INET, \
ai_socktype: 1:SOCK_STREAM, ai_protocol: 6, ai_addrlen: 16, ai_addr: 0x615238e79e30:{sa_family: \
2:AF_INET, sin_addr: "128.130.173.64", sin_port: 80}, ai_canonname: (nil):"", ai_next: (nil)}]

1747639484.870983698 17036 17036 \
socket(2:AF_INET, 1:SOCK_STREAM, 6): 0x61520b0174f2 (/home/lorenz/client+0x14f2, client.c:81)

1747639484.870991734 17036 17036 \
return 7; errno 0

1747639484.870998006 17036 17036 \
connect(7, 0x615238e79e30:{sa_family: 2:AF_INET, sin_addr: "128.130.173.64", sin_port: 80}, 16): \
0x61520b0175f3 (/home/lorenz/client+0x15f3, client.c:104)

1747639484.877322756 17036 17036 \
return 0; errno 0

1747639484.877333157 17036 17036 \
freeaddrinfo(0x615238e79e00): 0x61520b017638 (/home/lorenz/client+0x1638, client.c:114)

1747639484.877358736 17036 17036 \
return

1747639484.877364678 17036 17036 \
send(7, 0x7ffdff7b0f70:"GET / HTTP/1.1\r\nHost: www.complang.tuwien.ac.at\r\nUser-Agent: \
osue-12119052/1.0\r\nConnection: close\r\n\r\n", 101, 0x0:|): 0x61520b017f5c \
(/home/lorenz/client+0x1f5c, client.c:277)

1747639484.877385048 17036 17036 \
return 101; errno 0

1747639484.877390719 17036 17036 \
recv(7, 0x7ffdff7b0f70, 4095, 0x2:|MSG_PEEK|): 0x61520b017fa1 (/home/lorenz/client+0x1fa1, \
client.c:284)

1747639484.885364636 17036 17036 \
return 2674; errno 0; buf=0x7ffdff7b0f70:"HTTP/1.1 200 OK\r\n\
Date: Mon, 19 May 2025 07:24:44 GMT\r\n\
Server: Apache/2.4.62 (Debian) OpenSSL/3.0.15\r\n\
Last-Modified: Thu, 25 Aug 2022 14:41:10 GMT\r\n\
ETag: \"944-5e711c9dd0ce5\"\r\nAccept-Ranges: bytes\r\nContent-Length: 2372\r\n\
Vary: Accept-Encoding\r\nConnection: close\r\nContent-Type: text/html; charset=UTF-8\r\n\r\n\
<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n \
\"http://www.w3.org/TR/html4/strict.dtd\">\n<HTML lang=\"de\">\n\

[-- omitted --]
</HTML>\n"

1747639484.889134948 17036 17036 \
recv(7, 0x7ffdff7b0f70, 302, 0x0:|): 0x61520b018062 (/home/lorenz/client+0x2062, client.c:300)

1747639484.889148325 17036 17036 \
return 302; errno 0; buf=0x7ffdff7b0f70:"HTTP/1.1 200 OK\r\n\
Date: Mon, 19 May 2025 07:24:44 GMT\r\n\
Server: Apache/2.4.62 (Debian) OpenSSL/3.0.15\r\n\
Last-Modified: Thu, 25 Aug 2022 14:41:10 GMT\r\n\
ETag: \"944-5e711c9dd0ce5\"\r\nAccept-Ranges: bytes\r\nContent-Length: 2372\r\n\
Vary: Accept-Encoding\r\nConnection: close\r\nContent-Type: text/html; charset=UTF-8\r\n\r\n"

1747639484.889156551 17036 17036 \
recv(7, 0x7ffdff7b0f70, 4096, 0x0:|): 0x61520b018442 (/home/lorenz/client+0x2442, client.c:360)

1747639484.889160779 17036 17036 \
return 2372; errno 0; buf=0x7ffdff7b0f70:"\
<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n\ \
\"http://www.w3.org/TR/html4/strict.dtd\">\n<HTML lang=\"de\">\n\

[-- omitted --]
</HTML>\n"

1747639484.889196809 17036 17036 \
recv(7, 0x7ffdff7b0f70, 4096, 0x0:|): 0x61520b018442 (/home/lorenz/client+0x2442, client.c:360)

1747639484.889200556 17036 17036 \
return 0; errno 0; buf=0x7ffdff7b0f70:""

1747639484.889203532 17036 17036 \
close(7): 0x61520b018489 (/home/lorenz/client+0x2489, client.c:375)

1747639484.889214523 17036 17036 \
return 0; errno 0

Listing 2.10: Recoreded function calls from ./client.

17

2. Intercepting Function Calls

function call. This is beneficial because many library functions in C rely on these pre-
and post-conditions, which are not enforced by the compiler or in any other way.

For example, the malloc function has the post-condition that the returned value later
needs to be passed to free to avoid memory leaks. The free function, on the other
hand, has the pre-condition that the passed value was previously acquired using malloc
and may not be yet free’d. Any violation of such pre- and post-conditions may be
reported as incompliant behavior. [8]

This means that intercepted function calls allow a tester to check if programmers use
library function in compliance to their specification. Other checks may also include guards
to calls to “forbidden” functions, or that specific functions must be called exactly three
times. Another important post-condition of most library functions is the return value,
which in most cases indicates success or failure of an operation. However, intercepting
of calls alone may not be able to verify if a program really checks the return value of a
function and acts accordingly. Chapter 3 shows how this problem may be solved.

2.9.1 Validating Memory Management
Lorem Ipsum. (malloc, calloc, realloc, free, getaddrinfo, freeaddrinfo).

2.9.2 Validating Resource Management
Lorem Ipsum. (open, close, socket, . . .).

18

CHAPTER 3
Manipulating Function Calls

This chapter discusses how to manipulate function calls and how this may be used to
test programs. For how function calls may be intercepted at all, see Chapter 2. This
chapter builds on the basis of the previous one and expands its functions. “Manipulation”
in this context means to change the arguments of a function then running it normally,
or skipping the execution of the real function completely and simply returning a given
value (“mocking”). These techniques allow in-depth testing of programs.

In contrast to simply recording and logging function calls which may be controlled via
environment variables, manipulation of such function calls requires some other process
to indicate how to handle each call. This work uses simple sockets to communicate
between the process of the program to be tested and a “server” which decides what action
to perform for each function call. Currently, only communication over Unix sockets is
implemented, but communication over TCP sockets is also easily possible.

Figure 3.1 illustrates the control flow for manipulating function calls.

3.1 Defining a Protocol

When using a socket to communicate with another process, a protocol definition is needed.
This works defines a text-based protocol in which line breaks denote the end of a message.
The following subsections describe the defined message types.

3.1.1 Init Message (Client → Server)

This message is the first message sent in a newly established connection. The client
(intercept.so) uses it to identify the running program to the server (PID, path, . . .).

19

3. Manipulating Function Calls

:Program :lib.so :intercept.so :Server

malloc(x)
“malloc(x)”

“ok”
malloc(x)

return a
“return a”

return a

Intercepted CallIntercepted Call

malloc(x)
“malloc(x)”
“modify y”

malloc(y)

return b
“return b”

return b

Modified CallModified Call

malloc(x)
“malloc(x)”

“fail” / “return c”

“return c”
return c

Mocked CallMocked Call

Figure 3.1: Simplified Control Flow for Function Call Manipulation.

20

3.2. Automated Testing using Function Call Manipulation

3.1.2 Call Message (Client → Server)
For each function call the client sends this message to the server and waits for a reply
(Action message). The contents of this message type correspond to the first line of an
intercepted function call (see Section 2.9).

3.1.3 Action Message (Server → Client)
After receiving a Call message from the client, the server decides what the client should
do with this call. The server responds in one of four possible ways:

"ok" indicates that the function should be called normally.

"modify ARG..." indicates that the arguments of the function should be changed
according to the message before the call to the function.

"fail ERROR" indicates that the function should not be called and instead should fail
with the given error code.

"return VALUE" indicates that the function should simply return the provided value
without calling the real function.

3.1.4 Return Message (Client → Server)
This message informs the server about the resulting return value. The server does not
acknowledge this message. The contents of this message type correspond to the second
line of an intercepted function call (see Section 2.9).

3.2 Automated Testing using Function Call Manipulation
As seen in Figure 3.1 function call manipulation allows for mocking individual calls.
Mocking may be used to see how the program behaves when individual calls to function
fail or return an unusual, but valid, value. The simplest way to automatically test
programs is to run them multiple times and on each run let a single function call fail.
The resulting sequence of function calls now may be put together to a call sequence graph
(or tree). By analyzing this call graph, it is possible to decide if a program correctly
terminated when faced with a failed function call. This may be the case when the
following function calls differ from those which were recorded on a default run (without
any mocked function calls).

3.2.1 Testing Return Value Checks
Figure 3.2 shows the simplified and collapsed call sequence graph of the prior example in
Section 2.8. Each edge between two nodes without any label indicates the next function
call on a normal run of the program. Edges labeled with “fail” indicate the next function

21

3. Manipulating Function Calls

call after a mocked failed call. In reality, there are multiple failing paths, each for every
possible error return value, but in this example they all yield the same resulting path,
therefore, they have been collapsed.

To test, if a programmer always checked the return value of a function and acted
accordingly, this resulting call sequence graph now may be analyzed. This test seems
trivial at first. The simplest approach is to verify that after a failing function call
only “cleanup” function calls (free, close, exit, . . .) follow. For simple programs,
this assumption may hold, but there are many exceptions. For example, what if the
program recognizes the failed call correctly as failed but recovers and continues to operate
normally? Or what if the “cleanup” path is very complex and includes function calls
not priorly marked as valid cleanup functions? However, for simple programs (like those
mentioned in Section 1.1), the simplest approach from above suffices.

3.2.2 Testing Correct Handling of Interrupts
Many functions (like read, write, or sem_wait) are interruptable by signals. When
this happens, they return a value indicating an error and set errno to EINTR. Usually,
the program is expected to repeat the call until it gets a real return value or error other
than EINTR. Therefore, testing correct handling of interrupts is a different type of test
in contrast to general tests on return value checks as seen in Subsection 3.2.1.

It is relatively simple to test if a program correctly handles interrupts. On any function
call, that may yield EINTR mock the call and return exactly that error. Afterward,
check if the same function is called again. To increase confidence in the result, one may
repeat this process multiple times. As in the test in Subsection 3.2.1, the handling of
the interrupt may involve calls to other functions, so this method is not always the right
choice. But for simple programs, it totally suffices.

22

3.2. Automated Testing using Function Call Manipulation

getopt
client+0x1ac5, client.c:186

getaddrinfo
client+0x147b, client.c:74

socket
client+0x14f2, client.c:81

connect
client+0x15f3, client.c:104

freeaddrinfo
client+0x1638, client.c:114

send
client+0x1f5c, client.c:277

recv
client+0x1fa1, client.c:284

recv
client+0x2062, client.c:300

recv
client+0x2442, client.c:360

recv
client+0x2442, client.c:360

close
client+0x2489, client.c:375

exit
sys+0x0

exit
sys+0x0

freeaddrinfo
client+0x1638, client.c:114

close
client+0x1611, client.c:106

fail

fail

fail

fail

fail

fail

fail

fail

Figure 3.2: Simplified Call Sequence Graph of ./client.

23

CHAPTER 4
Conclusion

Lorem Ipsum.

Perhaps do some study/“research” on performance (CPU/memory/. . .).

25

Overview of Gen. AI Tools Used

No generative AI tools were used in and for this work whatsoever.

27

List of Figures

3.1 Simplified Control Flow for Function Call Manipulation. 20
3.2 Simplified Call Sequence Graph of ./client. 23

29

List of Tables

31

List of Listings

2.1 Contents of main.c. 4
2.2 Output of strace ./main. 4
2.3 Output of ltrace ./main. 5
2.4 Contents of wrap.c. 6
2.5 Compile main.c and wrap.c and run the resulting program. 6
2.6 Contents of preload.c. 7
2.7 Compile preload.c and run a program with LD_PRELOAD. 7
2.8 Contents of intercept-preload.c. 9
2.9 Contents of intercept. 15
2.10 Recoreded function calls from ./client. 17

33

Bibliography

[1] dladdr(3) – Library Functions Manual – Linux manual pages.

[2] dlsym(3) – Library Functions Manual – Linux manual pages.

[3] GCC(1) – GNU – Linux manual pages.

[4] ld(1) – GNU Development Tools – Linux manual pages.

[5] ld.so(8) – System Manager’s Manual – Linux manual pages.

[6] LTRACE(1) – User Commands – Linux manual pages.

[7] ltrace.conf(5) – ltrace configuration file – Linux manual pages.

[8] malloc(3) – Library Functions Manual – Linux manual pages.

[9] ptrace(2) – System Calls Manual – Linux manual pages.

[10] READELF(1) – GNU Development Tools – Linux manual pages.

[11] STRACE(1) – General Commands Manual – Linux manual pages.

[12] Using the GNU Compiler Collection (GCC).

[13] DWARF Committee. Dwarf debugging information format.

[14] Nitesh Dhanjani and Justin Clarke. Network Security Tools. O’Reilly.

[15] Quan Hong, Jiaqi Li, Wen Zhang, and Lidong Zhai. Datahook: An efficient and
lightweight system call hooking technique without instruction modification. Proc.
ACM Softw. Eng., 2(ISSTA), June 2025.

[16] Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin, and Kenta Ishiguro. zpoline:
a system call hook mechanism based on binary rewriting. In 2023 USENIX Annual
Technical Conference (USENIX ATC ’23), pages 293–300, Boston, MA, July 2023.
USENIX Association.

35

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Goal
	Definitions
	Related Work

	Intercepting Function Calls
	Identified Methods for Intercepting Function and System Calls
	Fundamental Project Structure
	Retrieving Function Argument Values
	Retrieving Function Return Values
	Determining Function Call Location
	intercept.so Library
	intercept Command
	Example
	Automated Testing on Intercepted Function Calls

	Manipulating Function Calls
	Defining a Protocol
	Automated Testing using Function Call Manipulation

	Conclusion
	Overview of Gen. AI Tools Used
	List of Figures
	List of Tables
	List of Listings
	Bibliography

